注目の論文
複雑なネットワーク内の情報のランク付け
Nature Communications
2011年7月20日
Ranking information in a complex network
数多くの検索エンジンがウェブ上のコンテンツをランク付けする際に利用するアルゴリズムを用いた研究で、ネットワーク内の情報をランク付けするときのランク付けの質が、そのネットワークの構造によって影響されることが明らかになった。この研究結果は、こうしてランク付けされた情報が科学やマーケティングにおいてどのように利用されるのかという点に重要な影響を与えるかもしれない。
「Pagerank」技術は、Googleなどの検索エンジンがウェブ上のコンテンツをランク付けする際に用いられている。このアルゴリズムでは、ネットワーク内のリンクをそれぞれ1票と数えて、情報のランク付けを行う。今回、G GhoshalとA-L Barabasiは、ネットワークの構造が、ランク付け性能に影響することを明らかにし、もともと「Pagerank」は、ネットワークのタイプによってランク付けが正確な場合とそれほど正確でない場合が生じる可能性があるという結論を示した。つまり、食物網などの指数関数的ネットワークは、摂動を起こしやすい。一方、インターネットなどのスケールフリーネットワークでは、利用可能な情報とコンテンツの量が増えると、上位にランクされた項目が明白化、安定化し、ランク付けの質が向上する。
doi: 10.1038/ncomms1396
注目の論文
-
4月24日
量子物理学:通信インフラを活用した長距離量子通信Nature
-
4月15日
生体医工学:視覚障害者の移動を支援するウェアラブルAIシステムNature Machine Intelligence
-
4月10日
コンピューティング:光速で処理するチップNature
-
4月10日
惑星科学:月の裏側の水の存在量の評価Nature
-
4月2日
気候変動:南極海の温暖化が熱帯降雨に及ぼす影響Nature Communications
-
3月27日
天文学:宇宙再電離の初期兆候Nature