注目の論文
物理学:ガラスの振る舞いを調べるAIマップ
Nature Physics
2020年4月7日
Physics: AI maps probes the heat of glass
機械学習を用いることで、さまざまな温度と圧力の制約の下でのガラスの振る舞いを、ガラスを作っている個々の粒子の最初の位置のみに基づいて予測できると報告した論文がNature Physics に掲載される。今回の知見によって、粉粒体、コロイド懸濁液、生物の細胞などのさまざまな系の力学的性質をより深く理解できる可能性がある。
ガラス質系は、固体として振る舞うことが多いが、微視的なレベルでは液体のように見える。つまり、ガラス質系の粒子は、不規則に配置されているのである。ガラスのダイナミクスが極めて遅いことの正確な原因の解明は、かねてから物理学と材料科学が直面している課題となってきた。
今回、Victor Bapstたちは、グラフニューラルネットワークと呼ばれる種類の機械学習モデルを使って、ガラス質系のダイナミクスを予測した。そして彼らは、ガラス質系の特徴とそれに対応する物理的特性を、その系の粒子の種類と位置だけを入力として使って学習するアルゴリズムを開発した。最も注目すべきなのは、この方法が、すぐに近くにある粒子間の相互作用と遠く離れた粒子間の相互作用のどちらも捉えることである。従って、このアルゴリズムは、再配置する粒子の位置と動きを、さまざまな温度圧力、密度の範囲で非常に長い時間スケールにわたって予測できので、その性能は、この問題の研究に使われる既存の機械学習法より優れている。
著者たちは、このアルゴリズムは、ガラス以外の他の系に適用するのに十分ロバストである可能性があると結論付けている。
doi: 10.1038/s41567-020-0842-8
注目の論文
-
5月15日
理論物理学:二体問題を解くNature
-
5月15日
惑星科学:月内部の非対称性を示す証拠Nature
-
5月14日
Nature Scientist at Work コンペティションの受賞者の発表Nature
-
5月9日
物理学:卵は横向きに落とすと割れにくいCommunications Physics
-
4月24日
量子物理学:通信インフラを活用した長距離量子通信Nature
-
4月15日
生体医工学:視覚障害者の移動を支援するウェアラブルAIシステムNature Machine Intelligence