Volume 493 Number 7434



Change for good p.577

The United States must boost energy spending to make its mark on the climate debate.

doi: 10.1038/493577b


Twice the price p.577

Governments and funding agencies must do more to prevent the awarding of grants to research projects with significant overlap.

doi: 10.1038/493577a


Inflatable friends p.578

Research balloons have taught us much about the atmosphere, and could now fly into space.

doi: 10.1038/493578a



Research prize boost for Europe p.585

Graphene and virtual brain win billion-euro competition.

doi: 10.1038/493585a


UK research councils could face mergers p.586

Wide-ranging review edges towards single funding pot.

doi: 10.1038/493586a


Coffee rust regains foothold p.587

Researchers marshal technology in bid to thwart fungal outbreak in Central America.

doi: 10.1038/493587a


Funding agencies urged to check for duplicate grants p.588

Nature probe reveals lack of oversight of researchers who win two grants for similar projects.

doi: 10.1038/493588a


Magnetic logic makes for mutable chips p.589

Alternative transistor relies on exotic semiconductor.

doi: 10.1038/493589a


Obama rekindles climate hopes p.590

President will use regulations to sidestep stalled Congress.

doi: 10.1038/493590a

News Features


Planetary science: Caught in the act p.592


doi: 10.1038/493592a


Ocean conservation: A big fight over little fish p.597


doi: 10.1038/493597a

News & Views


Genetics: A social rearrangement p.612


doi: 10.1038/nature11854


Solar physics: The planetary hypothesis revived p.613


doi: 10.1038/493613a


Structural biology: Spliceosome's core exposed p.615


doi: 10.1038/nature11857


Biogeochemistry: The depths of nitrogen cycling p.616


doi: 10.1038/493616a


Materials science: Synthetic polymers with biological rigidity p.618


doi: 10.1038/nature11855


Condensed-matter physics: Hidden is more p.619


doi: 10.1038/493619a



Hastatic order in the heavy-fermion compound URu2Si2 p.621

The development of collective long-range order by means of phase transitions occurs by the spontaneous breaking of fundamental symmetries. Magnetism is a consequence of broken time-reversal symmetry, whereas superfluidity results from broken gauge invariance. The broken symmetry that develops below 17.5 kelvin in the heavy-fermion compound URu2Si2 has long eluded such identification. Here we show that the recent observation of Ising quasiparticles in URu2Si2 results from a spinor order parameter that breaks double time-reversal symmetry, mixing states of integer and half-integer spin. Such ‘hastatic’ order hybridizes uranium-atom conduction electrons with Ising 5f2 states to produce Ising quasiparticles; it accounts for the large entropy of condensation and the magnetic anomaly observed in torque magnetometry. Hastatic order predicts a tiny transverse moment in the conduction-electron ‘sea’, a colossal Ising anisotropy in the nonlinear susceptibility anomaly and a resonant, energy-dependent nematicity in the tunnelling density of states.

doi: 10.1038/nature11820


Towards germline gene therapy of inherited mitochondrial diseases p.627

Mutations in mitochondrial DNA (mtDNA) are associated with severe human diseases and are maternally inherited through the egg’s cytoplasm. Here we investigated the feasibility of mtDNA replacement in human oocytes by spindle transfer (ST; also called spindle–chromosomal complex transfer). Of 106 human oocytes donated for research, 65 were subjected to reciprocal ST and 33 served as controls. Fertilization rate in ST oocytes (73%) was similar to controls (75%); however, a significant portion of ST zygotes (52%) showed abnormal fertilization as determined by an irregular number of pronuclei. Among normally fertilized ST zygotes, blastocyst development (62%) and embryonic stem cell isolation (38%) rates were comparable to controls. All embryonic stem cell lines derived from ST zygotes had normal euploid karyotypes and contained exclusively donor mtDNA. The mtDNA can be efficiently replaced in human oocytes. Although some ST oocytes displayed abnormal fertilization, remaining embryos were capable of developing to blastocysts and producing embryonic stem cells similar to controls.

doi: 10.1038/nature11647


Nuclear genome transfer in human oocytes eliminates mitochondrial DNA variants p.632

Mitochondrial DNA mutations transmitted maternally within the oocyte cytoplasm often cause life-threatening disorders. Here we explore the use of nuclear genome transfer between unfertilized oocytes of two donors to prevent the transmission of mitochondrial mutations. Nuclear genome transfer did not reduce developmental efficiency to the blastocyst stage, and genome integrity was maintained provided that spontaneous oocyte activation was avoided through the transfer of incompletely assembled spindle–chromosome complexes. Mitochondrial DNA transferred with the nuclear genome was initially detected at levels below 1%, decreasing in blastocysts and stem-cell lines to undetectable levels, and remained undetectable after passaging for more than one year, clonal expansion, differentiation into neurons, cardiomyocytes or β-cells, and after cellular reprogramming. Stem cells and differentiated cells had mitochondrial respiratory chain enzyme activities and oxygen consumption rates indistinguishable from controls. These results demonstrate the potential of nuclear genome transfer to prevent the transmission of mitochondrial disorders in humans.

doi: 10.1038/nature11800


Crystal structure of Prp8 reveals active site cavity of the spliceosome p.638

The active centre of the spliceosome consists of an intricate network formed by U5, U2 and U6 small nuclear RNAs, and a pre-messenger-RNA substrate. Prp8, a component of the U5 small nuclear ribonucleoprotein particle, crosslinks extensively with this RNA catalytic core. Here we present the crystal structure of yeast Prp8 (residues 885–2413) in complex with Aar2, a U5 small nuclear ribonucleoprotein particle assembly factor. The structure reveals tightly associated domains of Prp8 resembling a bacterial group II intron reverse transcriptase and a type II restriction endonuclease. Suppressors of splice-site mutations, and an intron branch-point crosslink, map to a large cavity formed by the reverse transcriptase thumb, and the endonuclease-like and RNaseH-like domains. This cavity is large enough to accommodate the catalytic core of group II intron RNA. The structure provides crucial insights into the architecture of the spliceosome active site, and reinforces the notion that nuclear pre-mRNA splicing and group II intron splicing have a common origin.

doi: 10.1038/nature11843



An old disk still capable of forming a planetary system p.644

In combination with existing observations and detailed circumstellar models, the detection of hydrogen deuteride emission from the star TW Hydrae implies a circumstellar disk mass of more than 0.05 solar masses, which is enough to form a planetary system like our own.

doi: 10.1038/nature11805


Magnetic ratchet for three-dimensional spintronic memory and logic p.647

A layered on-chip structure of magnetic thin films is engineered to permit the vertical transfer of magnetic information over near-atomic distances.

doi: 10.1038/nature11733


Responsive biomimetic networks from polyisocyanopeptide hydrogels p.651

Thermal transitions of polyisocyanide single molecules to polymer bundles and finally networks lead to hydrogels mimicking the properties of biopolymer intermediate-filament networks; their analysis shows that bundling and chain stiffness are crucial design parameters for hydrogels.

doi: 10.1038/nature11839


Divergent global precipitation changes induced by natural versus anthropogenic forcing p.656

Palaeoproxy evidence shows that the sea-surface-temperature gradient across the tropical Pacific Ocean strengthened during the Medieval Warm Period but weakens in model-projected future warming; this is because solar radiation induces greater precipitation for the same temperature change than greenhouse gases.

doi: 10.1038/nature11784


Deep instability of deforested tropical peatlands revealed by fluvial organic carbon fluxes p.660

Riverine carbon-14 measurements show that anthropogenic disturbance of peat swamp forest in southeast Asia is causing increased release of carbon that has been stored in the peat for thousands of years.

doi: 10.1038/nature11818


A Y-like social chromosome causes alternative colony organization in fire ants p.664

Fire ants (Solenopsis invicta) are socially polymorphic, with some workers tolerating several queens in their colony and others tolerating just one; this study shows that a non-recombining supergene is responsible for this social polymorphism, and the operation of this genomic region is remarkably similar to that of sex chromosomes.

doi: 10.1038/nature11832

生理:有毛皮膚へのマッサージ様ストローキングを検知するC繊維のin vivoでの遺伝学的同定

Genetic identification of C fibres that detect massage-like stroking of hairy skin in vivo p.669

Calcium imaging in live mice shows that a rare population of unmyelinated sensory neurons—expressing the G-protein-coupled receptor MRGPRB4—responds specifically to massage-like stroking of hairy skin, with positive reinforcing behavioural effects.

doi: 10.1038/nature11810


NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice p.674

Alzheimer’s-prone mice deficient in NLRP3 or caspase-1 fail to develop learning deficits and show reduced neuropathology.

doi: 10.1038/nature11729

細胞:Rag GTPアーゼによるmTORC1の調節は新生仔のオートファジーと生存に必要である

Regulation of mTORC1 by the Rag GTPases is necessary for neonatal autophagy and survival p.679

Mice expressing a constitutively active form of RagA are unable to inhibit mTORC1 after birth and to trigger autophagy, and succumb perinatally.

doi: 10.1038/nature11745


Visualization of splenic marginal zone B-cell shuttling and follicular B-cell egress p.684

Lymphocyte migration in the spleen is visualized live in mice using a real-time two-photon laser-scanning microscopy approach revealing that marginal zone and follicular B cells are highly motile and can shuttle between compartments, and integrin adhesion is the key to cellular retention in the marginal zone.

doi: 10.1038/nature11738


Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence p.689

Evidence for a link between cellular senescence and metabolic regulation is provided, through the observation that p53 represses the expression of malic enzymes, thereby regulating NADPH, lipid and glutamine metabolism; in turn, this repression further activates p53, promoting cellular senescence.

doi: 10.1038/nature11776


Identification of small RNA pathway genes using patterns of phylogenetic conservation and divergence p.694

To identify comprehensively factors involved in RNAi and microRNA-mediated gene expression regulation, this study performed a phylogenetic analysis of 86 eukaryotic species; the candidates this approach highlighted were subjected to Bayesian analysis with transcriptional and proteomic interaction data, identifying protein orthologues of already known RNAi silencing factors, as well as other hits involved in splicing, suggesting a connection between the two processes.

doi: 10.1038/nature11779


The architecture of human general transcription factor TFIID core complex p.699

The structures of three distinct human transcription factor IID (TFIID) protein assemblies are solved using cryo-electron microscopy; by incorporating TAF8 and TAF10, the key structural changes that remodel TFIID during assembly are determined, particularly the transition from a symmetric core-TFIID to an asymmetric holo-complex.

doi: 10.1038/nature11791

構造生物学:Enterococcus hiraeのV1-ATPアーゼの非対称な結晶構造に基づく回転機構

Rotation mechanism of Enterococcus hirae V1-ATPase based on asymmetric crystal structures p.703

Several crystal structures of the rotary motor of bacterial V-ATPase are solved at high resolution, representing different asymmetric structures and enabling the prediction of a model for the rotational mechanism of V1-ATPase.

doi: 10.1038/nature11778

「Journal home」に戻る