技術:スマートウォッチで集めたトレーニングデータからマラソンの成績を予測する
Nature Communications
2020年10月7日
Technology: Predicting marathon performance from smartwatch-collected training data
約1万4000人のランナーのスマートウォッチから収集したトレーニングランの走破距離と所要時間のデータを用いるだけで、そのランナーがマラソンを行った場合の正確なレースタイムを予測できることを報告する論文が、Nature Communications に掲載される。今回の研究では、ウエアラブル技術から非侵襲的に収集したデータを用い、数学的モデリングを使って生理的パラメーターを推定できることが実証された。
病院やポイントオブケア施設で日常的に収集されているような実世界のデータだけでなく、ウエアラブルデバイスから入手できるようになったデータも、医療を劇的に変えると予想されている。ウエアラブル運動量計で収集したデータによって、トレーニングと競技成績との間の相互作用についての理解が深まる可能性がある。
今回、Thorsten EmigとJussi Peltonenは、人間生理学の数学モデルを用いて、約1万4000人のランナーのスマートウォッチで収集したランニングデータを、それぞれのランナーの生理的パラメーターに関連付けた。Emigたちはこの枠組みによって、トレーニング(合計約160万回のトレーニングセッション)で走った距離と時間に関する情報のみを用いて、マラソンレースのタイムを正確に予測し、競技成績の重要な予測パラメーター(乳酸閾値など)を特定した。さらにEmigたちは、トレーニングセッションの特徴が競技成績とどのように関連しているのかに関する知見も得た。
非侵襲的に収集した連続データに重要な生理的パラメーターを関連付けることができれば、人間の健康モニタリングの可能性が開ける。例えば、選手一人一人に合わせてトレーニングセッションを組み立てることができる。Emigたちは、今回の知見が、実世界の条件下で運動選手の競技成績を数値化・予測するための新しい方法を暗示していると結論付けている。
doi: 10.1038/s41467-020-18737-6
注目の論文
-
9月12日
環境:アマゾン先住民の領域が人間の健康に恩恵をもたらすCommunications Earth & Environment
-
9月12日
動物学:タコはあらゆる作業に最適な腕を前面に出すScientific Reports
-
9月11日
古生物学:トカゲのような生物の起源をさらに遡るNature
-
9月11日
環境:2023年のカナダ山火事の長期的な影響を評価するNature
-
9月10日
健康:大麻の使用は女性の生殖能力に影響を与えるかもしれないNature Communications
-
9月9日
気候変動:気温の上昇が添加糖の消費量の増加と関連しているNature Climate Change