【ゲノム編集】予測可能性を備えたCRISPR-Cas9法による病原性遺伝的バリアントの編集
Nature
2018年11月8日
Genome editing: Predictable CRISPR-Cas9 editing of disease genetic variants
機械学習法を用いて、病因となる遺伝的バリアントを、予測どおりに正確に編集する方法について報告する論文が、今週掲載される。今回の研究は、ゲノム編集研究の新たな可能性と遺伝性疾患の治療法候補を示唆している。
CRISPR-Cas9は、研究のためのゲノム編集を一変させたが、この技術の精度を確保することが極めて重要だ。いわゆるDNA「テンプレート」は、通常CRISPR-Cas9ゲノム編集に用いられ、正確なDNA修復を可能にし、あるいはゲノムに特定のDNA配列を導入する。こうしたテンプレートなしにDNA修復を行うと、精度が低下すると考えられている。
今回、Richard Sherwoodたちの研究グループは、機械学習を用いてゲノム修復結果を予測する方法を開発することで、テンプレートを用いない正確なCas9編集を実証した。Sherwoodたちは、約2000組のCas9ガイドRNA(gRNA)とヒトDNA標的部位のペアからなるライブラリを用いて、機械学習モデル「inDelphi」を訓練した。すると、inDelphiは、ヒトゲノムを標的としたCas9 gRNAの5~11%が、いわゆるprecise-50(ゲノム編集の実施回数の50%以上で、予想通りの単一の修復結果になること)を満たすと予測した。また、inDelphiは、テンプレートなしのCas9編集の標的に適した病原性遺伝的バリアントを同定し、予測することもできた。こうしたバリアントの一部はこれまで、Cas9編集の標的にならないと考えられていた。
Sherwoodたちはさらに、ヒト細胞を用いて、3種の疾患(ヘルマンスキー・パドラック症候群、メンケス病、家族性高コレステロール血症)に関連する約200の病原性バリアントを正確に編集、修復でき、precise-50基準が満たされることを実験的に確認した。
この研究知見は、テンプレートを用いずに正確なゲノム編集を行う方法を明確に示している。
doi: 10.1038/s41586-018-0686-x
注目の論文
-
10月3日
神経科学:ショウジョウバエの脳の完全な地図Nature
-
9月26日
ウイルス学:牛のH5N1型インフルエンザは搾乳によって広がる可能性があるNature
-
9月26日
進化:哺乳類の顎関節の起源を調査するNature
-
9月24日
生態学:タコと魚の狩猟グループにおける共同リーダーシップNature Ecology & Evolution
-
9月19日
気候変動:将来の干ばつは予想以上に長期化する可能性Nature
-
9月17日
神経科学:妊娠に伴う脳の変化を調査するNature Neuroscience