注目の論文
【人工知能】ロンドン地下鉄を使いこなす機械学習モデル
Nature
2016年10月13日
Artificial intelligence: Learning machine navigates London Underground
神経ネットワークとコンピューターの最も優れた特徴を組み合わせたハイブリッド型機械学習モデルについて記述された論文が、今週掲載される。
従来のコンピューターは、複雑な形式のデータを処理できるが、そうした課題を実行するには人手によるプログラミングを必要とする。これに対して人工ニューラルネットワーク(人工神経回路網)は、データ中にパターンを見つけ出す能力を有する脳のような学習を模倣するように開発されたが、構造化データの記号処理に必要なメモリアーキテクチャーがない。
今回、Alex Graves、Greg Wayne、Demis Hassabisたちの研究グループは、いわゆる“Differentiable Neural Computer (DNC)”を開発した。これは、事例からの学習や試行錯誤による学習ができるニューラルネットワークと従来のコンピューターのランダムアクセスメモリーに似た外部記憶構造によって構成されている。そのため、DNCは、ニューラルネットワークのように学習できる一方で、コンピューターのように複雑なデータの処理も可能だ。
今回の研究は、DNCが、家系図や交通ネットワークのようなグラフ構造を理解でき、例えば、予備知識なしにロンドン地下鉄における最適な乗り継ぎ経路を導き出し、目的地が記号言語で記述された移動ブロックパズルを解けることを明らかにしている。
doi: 10.1038/nature20101
注目の論文
-
12月4日
社会科学:不安定なビデオ通話は、会話だけでなくそれ以上のものを損なうNature
-
12月3日
動物の行動:病気のアリはコロニーを守るため自ら犠牲となるよう合図するNature Communications
-
12月2日
代謝:初期の感覚刺激がマウスの肥満リスクを形作るかもしれないNature Metabolism
-
12月2日
ウイルス学:ヘテロ接合型CCR5 Δ32幹細胞移植後のHIV-1寛解Nature
-
11月28日
心理学:インスタグラムのユーザーはソーシャルメディア依存症を過大評価しているScientific Reports
-
11月27日
人類学:古代の「謎の」足の持ち主を発見Nature
