注目の論文
【人工知能】ロンドン地下鉄を使いこなす機械学習モデル
Nature
2016年10月13日
Artificial intelligence: Learning machine navigates London Underground
神経ネットワークとコンピューターの最も優れた特徴を組み合わせたハイブリッド型機械学習モデルについて記述された論文が、今週掲載される。
従来のコンピューターは、複雑な形式のデータを処理できるが、そうした課題を実行するには人手によるプログラミングを必要とする。これに対して人工ニューラルネットワーク(人工神経回路網)は、データ中にパターンを見つけ出す能力を有する脳のような学習を模倣するように開発されたが、構造化データの記号処理に必要なメモリアーキテクチャーがない。
今回、Alex Graves、Greg Wayne、Demis Hassabisたちの研究グループは、いわゆる“Differentiable Neural Computer (DNC)”を開発した。これは、事例からの学習や試行錯誤による学習ができるニューラルネットワークと従来のコンピューターのランダムアクセスメモリーに似た外部記憶構造によって構成されている。そのため、DNCは、ニューラルネットワークのように学習できる一方で、コンピューターのように複雑なデータの処理も可能だ。
今回の研究は、DNCが、家系図や交通ネットワークのようなグラフ構造を理解でき、例えば、予備知識なしにロンドン地下鉄における最適な乗り継ぎ経路を導き出し、目的地が記号言語で記述された移動ブロックパズルを解けることを明らかにしている。
doi: 10.1038/nature20101
注目の論文
-
10月31日
古生物学:アンモライト宝石が鮮やかな色を得る仕組みScientific Reports
-
10月30日
気候変動:南極の棚氷が海洋温暖化によって脅威にさらされているNature
-
10月30日
惑星科学:圧力下で水の世界が形成されるかもしれないNature
-
10月23日
環境:リチウムイオン電池リサイクルのための国際的な枠組みNature
-
10月23日
素粒子物理学:チームワークがニュートリノの挙動の理解を深めるNature
-
10月23日
量子物理学:「時間を逆転させる」ことで量子ダイナミクスを探るNature
