「目に見える」ディープラーニングによって遺伝子が細胞の特徴を形作る仕組みが明らかになった
Nature Methods
2018年3月6日
細胞内部の仕組みを、プロセスが分かっている新たなディープラーニングコンピューターアルゴリズムによって明らかにした論文が、今週掲載される。
人工知能は、顔認識や言語翻訳、ゲームプレーなど、通常は人間が行う数々の複雑な作業を行うことができる。人工ニューラルネットワークとも呼ばれるディープラーニングネットワークは、生物学的データ解析の自動化にますます使われるようになっている。
ディープラーニングモデルには、作業の実行に用いるプロセスを容易に確認できないという課題がある。この過程が通常、「ブラックボックス」であるためだ。生物学的な応用に関しては、解析対象データをディープラーニングモデルがどのように認識して処理するのかを調べられれば、こうしたデータの生物学的背景をより深く理解できる可能性がある。
Trey Idekerたちは、ディープラーニングアルゴリズムの構造を、細胞内の既知の分子システムの構造にマッピングすることにより、「目に見える」人工ニューラルネットワークを構築した。このモデルは、いったん訓練されると、遺伝的変化の物理的影響を予測できるようになることが明らかになった。さらに、モデルの構成要素が分かっているため、遺伝子と物理的特徴との関係の基盤となる機序について洞察を得ることもできる。研究チームは、こうした目に見えるニューラルネットワークを、遺伝学的論理の理解や、特定の物理的特徴に重要な分子システムの同定、細胞内の新たなプロセスの発見にどのように活用できるかについても示している。
doi:10.1038/nmeth.4627
「Nature 関連誌注目のハイライト」は、ネイチャー広報部門が報道関係者向けに作成したリリースを翻訳したものです。より正確かつ詳細な情報が必要な場合には、必ず原著論文をご覧ください。
注目のハイライト
-
化石:最も古く知られている「爬虫類」の足跡Nature
-
惑星科学:月内部の非対称性を示す証拠Nature
-
古生物学:「シカゴ」始祖鳥が、この古代鳥に新たな知見をもたらすNature
-
理論物理学:二体問題を解くNature
-
がん:乳がん治療薬の臨床試験で生存率の向上が示されたものの、がんの消失は限定的であったNature Communications
-
Nature Scientist at Work コンペティションの受賞者の発表Nature