Research press release

素粒子物理学:反物質にレーザー光を当てる

Nature

反物質の原子の分光測定を行うことは、反物質物理学の長年の目標だったが、それが初めて実現された。今回の研究で得られた新知見は、物質と反物質の振る舞いに違いがあるかどうかという点の高精密な検証方法の開発に向けた重要な一歩となる。

素粒子物理学の標準模型ではビッグバン以降の宇宙に物質と反物質がそれぞれ同じ量だけ存在すると予測されているのに、現在の宇宙を構成しているのは、ほとんど全て通常の物質のように考えられるのはなぜか、というのが物理学上の大きな謎の1つだ。原子に光を当てると原子は励起し、原子が基底状態に復帰すると光を発し、その周波数ごとの強度分布(スペクトル)を正確に測定できる(分光測定)。ところが反物質は、物質と接触すると消滅してしまうために生成と捕捉が難しく、そのために反物質の特性を測定することは難しい。

欧州原子核研究機構(CERN)に設置された反陽子減速器は、近年の進歩により、反陽子と反水素の捕捉と測定ができるようになった。今回、CERNにおけるALPHA共同研究のJeffrey Hangstの研究チームは、長さ280 mm、直径44 mmの円柱状の真空チャンバーに反水素原子を磁気的に捕捉した。そしてHangstたちは真空チャンバーの窓を通してレーザー光を照射し、反原子の1S-2S遷移(基底状態から励起状態への遷移)を測定した。Hangstたちは、反水素と水素の遷移周波数と一致していることを報告している。水素のスペクトルは高精度で解明されているため、反水素の分光測定を改良することで、物質と反物質の対称性の高感度検証を行う方法が得られると考えられる。

The first spectroscopic measurement of an atom of antimatter - a longstanding goal in antimatter physics - is reported online in Nature this week. The findings represent a significant step towards the development of highly precise tests of whether matter behaves differently from antimatter.

A major puzzle in physics is why today’s Universe seems to consist almost entirely of ordinary matter when the Standard Model of particle physics predicts that there should have been equal amounts of matter and antimatter after the Big Bang. Atoms can be excited by firing light at them, and when they return to their ground state they emit light the frequency distribution of which forms a spectrum that can be precisely measured (spectroscopy). However, antimatter is difficult to produce and to trap because it annihilates on contact with matter, which makes measuring its properties challenging.

Recent advances at CERN’s Antiproton Decelerator have allowed researchers to trap and measure antiprotons and antihydrogen. Now, Jeffrey Hangst and colleagues from CERN’s ALPHA collaboration have magnetically trapped atoms of antihydrogen in a cylindrical vacuum chamber that is 280 millimetres long and has a diameter of 44 millimetres. They shone a laser light through windows in the chamber to measure the 1S-2S transition of the anti-atoms (the transition from the ground state to an excited state). The authors report that the transition frequency of antihydrogen is consistent with that of hydrogen. The spectrum of hydrogen has been characterized to high precision, so improvements in antihydrogen spectroscopy should yield highly sensitive tests of matter-antimatter symmetry.

doi: 10.1038/nature21040

「Nature 関連誌注目のハイライト」は、ネイチャー広報部門が報道関係者向けに作成したリリースを翻訳したものです。より正確かつ詳細な情報が必要な場合には、必ず原著論文をご覧ください。

メールマガジンリストの「Nature 関連誌今週のハイライト」にチェックをいれていただきますと、毎週最新のNature 関連誌のハイライトを皆様にお届けいたします。

「注目のハイライト」記事一覧へ戻る

プライバシーマーク制度