量子コンピューティング:誤り訂正量子コンピューターの実現に向けた一歩
Nature
2021年7月15日
Quantum computing: A step towards error-corrected quantum computers
Google Quantum AIによって設計された量子プロセッサー「シカモア(Sycamore)」の誤りの抑制が指数関数的に強化されたことを報告する論文が、今週、Nature に掲載される。この実験的な実証は、スケーラブルでフォールトトレラントな量子コンピューターの開発への道を開くかもしれない。
量子コンピューターは、古典的なコンピューターと同様に、その基盤となる物理システムからの「ノイズ」を原因とした誤りが発生しやすい。その解決法の1つは、誤りの発生を即座に検出して、訂正する仕組みをコンピューターの動作の一部とすることである。量子誤りを訂正する方法の1つに、スタビライザーコードを用いる方法がある。スタビライザーコードでは、複数のキュービット(量子情報の単位で、古典的コンピューターのビットに相当する)が単一の論理キュービットとして扱われ、論理キュービットに格納された情報を毀損することなく誤りを検出し、訂正できる。量子計算の可能性を発揮させるためには、論理誤り率を低く抑える必要がある。
今回、Julian Kellyたちは、54個の超伝導キュービットの2次元アレイで構成されたシカモアにおける量子誤り訂正の性能を調べた。Kellyたちは、2種類のスタビライザーコードを実行した。1つは、最大21キュービットのチェーンからなる1次元反復コードで、誤り抑制を検証することを目的としている。もう1つは、7キュービットの2次元表面コードで、より大きなコードでのセットアップの互換性の原理を証明するために用いられる。Kellyたちは、反復コードを構成するキュービットの数を5から21に増やすと、論理誤りの抑制が指数関数的に強化され、最大100倍に達することを明らかにした。この誤り抑制は、50回の誤り訂正にわたって安定していた。
今回の結果は、量子誤り訂正を用いて誤りを制御できることを示唆しており、期待が持てる。シカモアというアーキテクチャーは、今回の研究では量子計算の可能性を実現するために必要な誤り率の閾値に達していないが、今回の結果は、この閾値の達成に近づいていることを示している。
doi: 10.1038/s41586-021-03588-yv
注目の論文
-
5月27日
持続可能性:自動車の廃プラスチックをグラフェンに変換するCommunications Engineering
-
5月27日
ロボット工学:ヒューマノイドロボットを用いたヒト組織移植片の培養Communications Engineering
-
5月26日
量子物理学:直接つながっていないノードとノードの間での量子情報のテレポーテーションNature
-
5月18日
生物工学:眼圧を測定して緑内障治療薬を送達するコンタクトレンズNature Communications
-
5月11日
物理学:群れの中で個々の鳥が速度を調節する仕組みのモデル化Nature Communications
-
4月28日
工学:これまでの記録を塗り替えた新しい跳躍ロボットNature