注目の論文
量子物理:SQUID-on-tipを使ったエネルギー散逸の画像化
Nature
2016年10月27日
Quantum physics: Imaging energy dissipation with SQUID-on-tip
このほど量子系のエネルギー散逸を観測できることが実証された。今回の研究で用いられた低温熱イメージング法は、量子系(例えば、量子情報の保存に用いられる量子系)の微視的な振る舞いに関する新たな手掛かりを得る上で役立つ可能性がある。この研究成果を報告する論文が、今週掲載される。
散逸とは、エネルギーが1つの形態から別の形態(基本的に利用不能な形態)に不可逆的に変化することを意味し、量子現象と古典的現象を区別する主な特徴の1つになっている。散逸が起こると量子情報が破壊されるため、量子状態を保存するには散逸を非常に弱くする必要があり、そのために散逸の測定が難しくなっている。そうしたエネルギーの流れを画像化するための既存の技術は、感度が不十分で、量子系の研究に求められる極低温域で作動しない。
今回、Dori Halbertalの研究チームは、極めて低いエネルギー散逸過程の熱的特徴を既存の方法より高い分解能と感度で画像化できるSQUID-on-tip(鋭利なピペットの先端に取り付けた超伝導量子干渉デバイス)を開発した。そして、このナノスケールの温度計を使って、カーボンナノチューブとグラフェンにおける散逸の画像化が行われた。
doi: 10.1038/nature19843
注目の論文
-
6月26日
天文学:新惑星の発見が宇宙の知識の空白を埋めるNature
-
6月26日
コンピューターサイエンス:コンピュータービジョンの研究が監視技術にどのように活用されているかNature
-
6月19日
工学:イメージングセンサーがより鮮やかに色を捉えるNature
-
6月17日
都市:人工光が都市部の生育期を延長させているNature Cities
-
6月12日
コンピューターサイエンス:不正行為を防ぐ乱数生成器Nature
-
6月12日
工学:油絵に生じた損傷を覆い隠すNature