注目の論文
「目に見える」ディープラーニングによって遺伝子が細胞の特徴を形作る仕組みが明らかになった
Nature Methods
2018年3月6日
Visible deep learning reveals how genes shape cell characteristics
細胞内部の仕組みを、プロセスが分かっている新たなディープラーニングコンピューターアルゴリズムによって明らかにした論文が、今週掲載される。
人工知能は、顔認識や言語翻訳、ゲームプレーなど、通常は人間が行う数々の複雑な作業を行うことができる。人工ニューラルネットワークとも呼ばれるディープラーニングネットワークは、生物学的データ解析の自動化にますます使われるようになっている。
ディープラーニングモデルには、作業の実行に用いるプロセスを容易に確認できないという課題がある。この過程が通常、「ブラックボックス」であるためだ。生物学的な応用に関しては、解析対象データをディープラーニングモデルがどのように認識して処理するのかを調べられれば、こうしたデータの生物学的背景をより深く理解できる可能性がある。
Trey Idekerたちは、ディープラーニングアルゴリズムの構造を、細胞内の既知の分子システムの構造にマッピングすることにより、「目に見える」人工ニューラルネットワークを構築した。このモデルは、いったん訓練されると、遺伝的変化の物理的影響を予測できるようになることが明らかになった。さらに、モデルの構成要素が分かっているため、遺伝子と物理的特徴との関係の基盤となる機序について洞察を得ることもできる。研究チームは、こうした目に見えるニューラルネットワークを、遺伝学的論理の理解や、特定の物理的特徴に重要な分子システムの同定、細胞内の新たなプロセスの発見にどのように活用できるかについても示している。
doi: 10.1038/nmeth.4627
注目の論文
-
6月25日
ゲノミクス:古代 DNA がカルパチア盆地の多様なコミュニティー組織を明らかにするNature Communications
-
6月24日
化学:細菌がプラスチック廃棄物を鎮痛剤に変換Nature Chemistry
-
6月19日
人類の進化:アフリカからの移動に先立つ、人間の生息域の大幅な拡大Nature
-
6月19日
気候変動:気候変動が作物生産に与える影響を評価するNature
-
6月19日
動物行動学:蛾の航行は星空に導かれているNature
-
6月17日
都市:人工光が都市部の生育期を延長させているNature Cities