注目の論文
【人工知能】ロンドン地下鉄を使いこなす機械学習モデル
Nature
2016年10月13日
Artificial intelligence: Learning machine navigates London Underground
神経ネットワークとコンピューターの最も優れた特徴を組み合わせたハイブリッド型機械学習モデルについて記述された論文が、今週掲載される。
従来のコンピューターは、複雑な形式のデータを処理できるが、そうした課題を実行するには人手によるプログラミングを必要とする。これに対して人工ニューラルネットワーク(人工神経回路網)は、データ中にパターンを見つけ出す能力を有する脳のような学習を模倣するように開発されたが、構造化データの記号処理に必要なメモリアーキテクチャーがない。
今回、Alex Graves、Greg Wayne、Demis Hassabisたちの研究グループは、いわゆる“Differentiable Neural Computer (DNC)”を開発した。これは、事例からの学習や試行錯誤による学習ができるニューラルネットワークと従来のコンピューターのランダムアクセスメモリーに似た外部記憶構造によって構成されている。そのため、DNCは、ニューラルネットワークのように学習できる一方で、コンピューターのように複雑なデータの処理も可能だ。
今回の研究は、DNCが、家系図や交通ネットワークのようなグラフ構造を理解でき、例えば、予備知識なしにロンドン地下鉄における最適な乗り継ぎ経路を導き出し、目的地が記号言語で記述された移動ブロックパズルを解けることを明らかにしている。
doi: 10.1038/nature20101
注目の論文
-
7月24日
テクノロジー:ブレスレットが手ぶりをコンピューターのコマンドに変換するNature
-
7月24日
古生物学:「トサカ」を持つ爬虫類が羽毛の進化理論を揺るがすNature
-
7月23日
神経科学:COVIDパンデミックが英国の成人の脳の老化を早めることに関連するNature Communications
-
7月22日
社会科学:週4日勤務制が労働者のウェルビーイングを向上させるNature Human Behaviour
-
7月18日
動物の行動:犬のテレビを視聴する習慣は性格によって異なるScientific Reports
-
7月18日
疫学:欧州における鳥インフルエンザ発生の主な予測因子が特定されるScientific Reports