注目の論文
集約的畜産を監視する機械学習
Nature Sustainability
2019年4月9日
Machine learning monitors intensive animal agriculture
機械学習を応用して、米国の集約的畜産施設の地図を手作業での調査よりも速く、かつ効率的に作製できることを報告する論文が、今週掲載される。その結果、ノースカロライナ州でこうした施設が新たに589か所特定されており、機械学習の応用は食品産業における環境違反の追跡に役立つ可能性がある。
集中家畜飼養施設(CAFO)は、米国の家畜の約40%を生産し、毎年約3億3500万トンの廃棄物を生み出している。米国のCAFOの約60%は登録されておらず、廃棄物処理の適切な許可を得ていないので、食品の安全性と水や土壌の汚染に深刻な影響を及ぼす可能性がある。米国の現在の法制度は、政府機関によるそうした施設の監視を困難にしている。そのため今のところ、CAFOの数、規模、位置に関する正確なデータはない。
今回Daniel HoとCassandra Handan-Naderは、機会学習法と高分解能画像を用いて米国ノースカロライナ州のCAFOを特定し、その結果と手作業による一覧表を比較している。この手法によって、これまでの手作業の調査と比べて、新たな家禽CAFOが589か所特定され、把握されているCAFO数が15%増加した。
著者たちは、今回の手法によって許可されていない施設や特に環境リスクの高い施設を特定することで、CAFOによる環境法の順守の監視が容易になると示唆している。
doi: 10.1038/s41893-019-0246-x
注目の論文
-
9月9日
気候変動:気温の上昇が添加糖の消費量の増加と関連しているNature Climate Change
-
9月9日
生態学:海洋の温暖化によって脅かされる重要な酸素生産性海洋微生物Nature Microbiology
-
9月4日
気候:地球の炭素貯蔵能力における世界的な限界の確立Nature
-
9月3日
環境:アマゾンの気候変容の鍵となる森林伐採Nature Communications
-
9月3日
気候変動:歴史的データが示す中国における雹嵐発生日数の増加Nature Communications
-
8月28日
環境科学:コンゴ民主共和国を侵食する都市部のガリーNature