注目の論文
複雑なネットワーク内の情報のランク付け
Nature Communications
2011年7月20日
Ranking information in a complex network
数多くの検索エンジンがウェブ上のコンテンツをランク付けする際に利用するアルゴリズムを用いた研究で、ネットワーク内の情報をランク付けするときのランク付けの質が、そのネットワークの構造によって影響されることが明らかになった。この研究結果は、こうしてランク付けされた情報が科学やマーケティングにおいてどのように利用されるのかという点に重要な影響を与えるかもしれない。
「Pagerank」技術は、Googleなどの検索エンジンがウェブ上のコンテンツをランク付けする際に用いられている。このアルゴリズムでは、ネットワーク内のリンクをそれぞれ1票と数えて、情報のランク付けを行う。今回、G GhoshalとA-L Barabasiは、ネットワークの構造が、ランク付け性能に影響することを明らかにし、もともと「Pagerank」は、ネットワークのタイプによってランク付けが正確な場合とそれほど正確でない場合が生じる可能性があるという結論を示した。つまり、食物網などの指数関数的ネットワークは、摂動を起こしやすい。一方、インターネットなどのスケールフリーネットワークでは、利用可能な情報とコンテンツの量が増えると、上位にランクされた項目が明白化、安定化し、ランク付けの質が向上する。
doi: 10.1038/ncomms1396
注目の論文
-
9月4日
惑星科学:地震観測による火星内部固体核の検出Nature
-
9月4日
工学:橋梁が崩壊した際に支え続ける方法Nature
-
9月3日
気候変動:歴史的データが示す中国における雹嵐発生日数の増加Nature Communications
-
9月3日
環境:アマゾンの気候変容の鍵となる森林伐採Nature Communications
-
9月2日
物理学:新たな光ファイバーが通信技術を向上させるかもしれないNature Photonics
-
9月2日
神経科学:AIはブレイン・コンピューター・インターフェースの制御能力を大幅に向上させるNature Machine Intelligence