注目の論文
複雑なネットワーク内の情報のランク付け
Nature Communications
2011年7月20日
Ranking information in a complex network
数多くの検索エンジンがウェブ上のコンテンツをランク付けする際に利用するアルゴリズムを用いた研究で、ネットワーク内の情報をランク付けするときのランク付けの質が、そのネットワークの構造によって影響されることが明らかになった。この研究結果は、こうしてランク付けされた情報が科学やマーケティングにおいてどのように利用されるのかという点に重要な影響を与えるかもしれない。
「Pagerank」技術は、Googleなどの検索エンジンがウェブ上のコンテンツをランク付けする際に用いられている。このアルゴリズムでは、ネットワーク内のリンクをそれぞれ1票と数えて、情報のランク付けを行う。今回、G GhoshalとA-L Barabasiは、ネットワークの構造が、ランク付け性能に影響することを明らかにし、もともと「Pagerank」は、ネットワークのタイプによってランク付けが正確な場合とそれほど正確でない場合が生じる可能性があるという結論を示した。つまり、食物網などの指数関数的ネットワークは、摂動を起こしやすい。一方、インターネットなどのスケールフリーネットワークでは、利用可能な情報とコンテンツの量が増えると、上位にランクされた項目が明白化、安定化し、ランク付けの質が向上する。
doi: 10.1038/ncomms1396
注目の論文
-
6月26日
天文学:新惑星の発見が宇宙の知識の空白を埋めるNature
-
6月26日
コンピューターサイエンス:コンピュータービジョンの研究が監視技術にどのように活用されているかNature
-
6月19日
工学:イメージングセンサーがより鮮やかに色を捉えるNature
-
6月17日
都市:人工光が都市部の生育期を延長させているNature Cities
-
6月12日
コンピューターサイエンス:不正行為を防ぐ乱数生成器Nature
-
6月12日
工学:油絵に生じた損傷を覆い隠すNature