量子計算:超低温状態を脱した量子ビット
Nature
2020年4月16日
Quantum computing: Qubits come out of the ultra-cold
既存の技術と比べると最大で15倍高い温度で動作する量子計算プラットフォームが実証されたことを報告する2編の論文が、今週、Nature に掲載される。このように相対的な温度上昇は非常に小さいが、現行の試作品を処理能力の高い大型の量子コンピューターにするスケーラビリティーに大きな違いをもたらす可能性がある。
(古典的計算におけるビットに対応する)量子ビットは、超伝導回路によって実現でき、シリコンなどの半導体内にも生成できる。こうした固体プラットフォームは、極端に低い温度まで冷却する必要がある。熱によって発生する振動によって量子ビットが破壊され、パフォーマンスの低下につながることがあるからだ。一般に、固体プラットフォームは、約0.1ケルビン(摂氏−273.05度)で動作する必要があり、そのためには高コストの冷却方法を必要とする。
このほど、1ケルビンを超える温度でシリコンを用いた量子計算プラットフォームを動作させて原理証明実験を行う2つの独立した研究が行われ、その結果がそれぞれの論文に報告されている。Menno Veldhorstたちの研究チームは、1.1ケルビンで動作する量子回路を作製し、Andrew Dzurakたちの研究チームは、約1.5ケルビンで動作するシステムを実証した。いずれの研究もシリコン中に閉じ込められた電子のスピンを量子ビットとして用いた。この電子スピンは、周囲の物質から十分に分離されているため、1ケルビンを超える温度でも十分に機能することが実証された。この温度では、冷却装置が強力に作動するため、量子ビットを制御するための局所的な電子回路を導入することができる。このことは、量子プロセッサーを数百万量子ビットまでスケールアップするための前提条件であるという考えをVeldhorstたちもDzurakたちも示している。
1ケルビンを下回る温度域への冷却は困難を伴い、多額の費用を要するため、今回の研究によって動作温度が1ケルビン超に引き上げられたことは、重要なマイルストーンとなる。動作温度が1ケルビンを超えれば、コストが大幅に下がり、効率が高まるからだ。また、シリコンを用いたプラットフォームを利用するということは、シリコンを用いた既存のハードウェアを使用する古典的計算システムへの統合に役立つため、魅力的である。
doi: 10.1038/s41586-020-2171-6
注目の論文
-
6月5日
気候:海と大気の相互作用が2023年の北大西洋熱波をもたらしたNature
-
6月5日
気候変動:干ばつの深刻化を招く要因の評価Nature
-
6月3日
生体医工学:AIペンが筆跡からパーキンソン病を検出Nature Chemical Engineering
-
6月3日
天文学:天の川銀河はアンドロメダ銀河との衝突を回避できるかもしれないNature Astronomy
-
5月22日
環境:AI モデルが既存の地球システム予測を上回るNature
-
5月22日
天文学:初期の天の川に似た銀河における予想外の性質Nature