病気にかかったスタッフを帰宅させても疾病の蔓延は止まらない
Nature Physics
2016年8月2日
Sending sick staff home won’t stop disease spread
疾病の流行時に、健康な人々を感染した人々の後任にすると、社会的ネットワークの基盤となっている構造に起因して、疾病が予測に反してより急速に地域社会全体に広がることが、今週のオンライン版で示唆されている。今回、モデル化と実証的データ分析を組み合わせて、米国における州レベルと全国レベルのインフルエンザの流行パターンが説明されている。
流行時に、感染した教師や医療従事者などの重要な役割を持つ人々を、系統的に健康な後任者に代えるという方策は、感染した労働者は働くことができず、他者に病気をうつすリスクがあるという明快な論理に従っている。しかし、疾病が広がるダイナミクスを理解するための標準的なモデルは、こうした健康な後任者が、後任となる以前よりも危険な状況にさらされるという事実を組み込むことができない。Samuel Scarpinoたちは、このリスクの増大を明確にエンコードしてネットワークモデルに組み込み、関係的交換と名付けたこの交代策によって、流行のピークに達した病気が流行の開始時の予測よりも速いスピードで伝播しうることを示した。
著者たちは、今回のモデルをインフルエンザとデング熱で検証した。この2つの疾病はどちらも季節的影響を受けるが、デング熱はインフルエンザと違って、伝染と反応の間に遅延があるという特徴があり、関係的交換の影響をより受けにくいと予想される。著者たちは、今回のモデルが米国における17回の全国レベルのインフルエンザの大流行のデータ、州レベルの25年間のインフルエンザデータ、プエルトリコから得られた19年間のデングウイルスデータと一致していることを示した。今回の知見よって、大流行時の公衆衛生政策決定への情報提供が改善されると思われる。
doi: 10.1038/nphys3832
注目の論文
-
7月24日
テクノロジー:ブレスレットが手ぶりをコンピューターのコマンドに変換するNature
-
7月24日
考古学:AIがラテン語の碑文を復元し、文脈を明らかにするNature
-
7月17日
惑星科学:惑星系の誕生の瞬間をとらえるNature
-
7月17日
素粒子物理学:CERNで観測されたつかみどころのない物質と反物質の非対称性Nature
-
7月10日
惑星科学:太陽系最大の衝突から得られた知見Nature
-
7月10日
環境:大西洋全域で高濃度のナノプラスチック粒子が検出されるNature