Research Abstract


Hybrid hydrogels containing vertically aligned carbon nanotubes with anisotropic electrical conductivity for muscle myofiber fabrication

2014年3月19日 Scientific Reports 4 : 4271 doi: 10.1038/srep04271


Samad Ahadian1, Javier Ramón-Azcón1, Mehdi Estili2, Xiaobin Liang1, Serge Ostrovidov1, 珠 玖仁3, Murugan Ramalingam1,4,5, 中嶋 健1, 目 義雄6, Hojae Bae7, 末永 智一1,3 & Ali Khademhosseini1,8,9,10,11

  1. 東北大学 原子分子材料科学高等研究機構
  2. 独立行政法人 物質・材料研究機構 若手国際研究センター
  3. 東北大学大学院 環境科学研究科
  4. クリスチャン医科大学(印)
  5. ストラスブール大学(仏)
  6. 独立行政法人 物質・材料研究機構 先端材料プロセスユニット
  7. 建国大学校(韓)
  8. ハーバード大学医学系大学院(米)
  9. マサチューセッツ工科大学(米)
  10. ハーバード大学(米)
  11. 慶熙大学校(韓)
Biological scaffolds with tunable electrical and mechanical properties are of great interest in many different fields, such as regenerative medicine, biorobotics, and biosensing. In this study, dielectrophoresis (DEP) was used to vertically align carbon nanotubes (CNTs) within methacrylated gelatin (GelMA) hydrogels in a robust, simple, and rapid manner. GelMA-aligned CNT hydrogels showed anisotropic electrical conductivity and superior mechanical properties compared with pristine GelMA hydrogels and GelMA hydrogels containing randomly distributed CNTs. Skeletal muscle cells grown on vertically aligned CNTs in GelMA hydrogels yielded a higher number of functional myofibers than cells that were cultured on hydrogels with randomly distributed CNTs and horizontally aligned CNTs, as confirmed by the expression of myogenic genes and proteins. In addition, the myogenic gene and protein expression increased more profoundly after applying electrical stimulation along the direction of the aligned CNTs due to the anisotropic conductivity of the hybrid GelMA-vertically aligned CNT hydrogels. We believe that platform could attract great attention in other biomedical applications, such as biosensing, bioelectronics, and creating functional biomedical devices.