Research Abstract


Single-Molecule Electrical Random Resequencing of DNA and RNA

2012年7月10日 Scientific Reports 2 : 501 doi: 10.1038/srep00501


大城 敬人1, 松原 一喜1, 筒井 真楠1, 古橋 匡幸1, 谷口 正輝1 & 川合 知二1

  1. 大阪大学 産業科学研究所
Two paradigm shifts in DNA sequencing technologies—from bulk to single molecules and from optical to electrical detection—are expected to realize label-free, low-cost DNA sequencing that does not require PCR amplification. It will lead to development of high-throughput third-generation sequencing technologies for personalized medicine. Although nanopore devices have been proposed as third-generation DNA-sequencing devices, a significant milestone in these technologies has been attained by demonstrating a novel technique for resequencing DNA using electrical signals. Here we report single-molecule electrical resequencing of DNA and RNA using a hybrid method of identifying single-base molecules via tunneling currents and random sequencing. Our method reads sequences of nine types of DNA oligomers. The complete sequence of 5′-UGAGGUA-3′ from the let-7 microRNA family was also identified by creating a composite of overlapping fragment sequences, which was randomly determined using tunneling current conducted by single-base molecules as they passed between a pair of nanoelectrodes.