Research Abstract


Covalently bonded three-dimensional carbon nanotube solids via boron induced nanojunctions

2012年4月13日 Scientific Reports 2 : 363 doi: 10.1038/srep00363


Daniel P. Hashim1, Narayanan T. Narayanan1, Jose M. Romo-Herrera2, David A. Cullen3, Myung Gwan Hahm1, Peter Lezzi4, Joseph R. Suttle5, Doug Kelkhoff6, E. Mun˜oz-Sandoval7, Sabyasachi Ganguli8, Ajit K. Roy8, David J. Smith9, Robert Vajtai1, Bobby G. Sumpter10, Vincent Meunier11, Humberto Terrones10,12, Mauricio Terrones13 & Pulickel M. Ajayan1

  1. ライス大学 Department of Mechanical Engineering & Materials Science(米国)
  2. Campus Universitario(スペイン)
  3. オークリッジ国立研究所 Materials Science&Technology Division(米国)
  4. レンセラー工科大学(米国)
  5. ライス大学 Department of Physics(米国)
  6. イリノイ大学アーバナ・シャンペーン校(米国)
  7. IMM(CNM-CSIC)(スペイン)
  8. Air Force Research Laboratory(米国)
  9. アリゾナ州立大学(米国)
  10. オークリッジ国立研究所Center for Nanophase Materials Sciences(米国)
  11. Applied Physics & Astronomy(米国)
  12. Institute of Condensed Matter and Nanosciences (ベルギー)
  13. ペンシルベニア州立大学(米国) & エキゾチック・ナノカーボン(ENCs)の創成と応用プロジェクト拠点(JST)(日本)
The establishment of covalent junctions between carbon nanotubes (CNTs) and the modification of their straight tubular morphology are two strategies needed to successfully synthesize nanotube-based three-dimensional (3D) frameworks exhibiting superior material properties. Engineering such 3D structures in scalable synthetic processes still remains a challenge. This work pioneers the bulk synthesis of 3D macroscale nanotube elastic solids directly via a boron-doping strategy during chemical vapour deposition, which influences the formation of atomic-scale “elbow” junctions and nanotube covalent interconnections. Detailed elemental analysis revealed that the “elbow” junctions are preferred sites for excess boron atoms, indicating the role of boron and curvature in the junction formation mechanism, in agreement with our first principle theoretical calculations. Exploiting this material’s ultra-light weight, super-hydrophobicity, high porosity, thermal stability, and mechanical flexibility, the strongly oleophilic sponge-like solids are demonstrated as unique reusable sorbent scaffolds able to efficiently remove oil from contaminated seawater even after repeated use.