Research press release


Nature Physics

Physics: Antinuclei travel from far, far away

反陽子と反中性子からなる軽い反原子核が、銀河の至る所で長い距離を移動している可能性があることを報告する論文が、Nature Physicsに掲載される。この知見は、ダークマターの探索に反原子核を利用できる可能性を示唆している、



Light antinuclei, comprised of antiprotons and antineutrons, may travel long distances throughout the Galaxy reports a paper published in Nature Physics. The findings suggest these antinuclei could be used in the search for dark matter.

There are no natural sources of antinuclei on Earth, but they are produced elsewhere in the Galaxy. It has been proposed that antinuclei may be the result of interactions between high-energy cosmic radiation, originating from outside our Solar System, and atoms in the interstellar medium (the space between stars in a galaxy). An alternative scenario is that antinuclei are formed by the annihilation of dark-matter particles that have not yet been discovered.

To explore the interactions of light antinuclei and matter, the ALICE Collaboration analysed the antiparticle of the helium-3 (a stable isotope of helium) nucleus. Anti-helium-3 nuclei were produced in particle collisions at the Large Hadron Collider, and these antinuclei then interacted with matter in the ALICE detector causing them to disappear. The authors determined the disappearance probability of antihelium-3 nuclei, and the impact of this probability on the journey of these antinuclei through our Galaxy. Their findings suggest that antihelium-3 nuclei can travel long distances, making them suitable for searching for dark-matter annihilation.

doi: 10.1038/s41567-022-01804-8


メールマガジンリストの「Nature 関連誌今週のハイライト」にチェックをいれていただきますと、毎週各ジャーナルからの最新の「注目のハイライト」をまとめて皆様にお届けいたします。