Research press release


Nature Physics

Upping the anti

反水素原子を生成して捕捉し、最長1,000秒間保存したことが、Nature Physics(電子版)で報告されている。この偉業は、反水素原子を捕捉している時間がこれまでで最も長いというだけでなく、「物質と反物質は同じ物理法則に従っているのか?」という問いの答えに私たちを近づけるものでもある。 反物質粒子は、宇宙空間だけでなく粒子加速器でも日常的に生成されているが、それらを捕捉し続けるのは、特に中性粒子では極めて難しい。これは、反物質と物質は接触すると対消滅し、通常の容器は物質でできているからである。昨年、CERNの共同研究グループALPHAは、通常の容器の代わりに磁気トラップを用いて、反水素原子を捕捉できることを実証し、172ミリ秒間保存することができた。今回、このチームは、保存時間を5,000倍以上に延ばしている。これは、これまでの実験で生成された反水素原子は高励起状態でのみ存在し、即座に対消滅してしまったが、今回の反水素原子には、基底状態に達する時間があるということである。保存時間がこのように長いため、捕捉された反原子の特性を初めて測定できるようになり、反水素原子の生成ダイナミクスと運動エネルギー分布が得られた。 改良されたトラップによって、将来の実験に十分な相互作用時間が得られ、レーザーやマイクロ波で反原子の量子的性質を調べたり、冷却して反物質に対する重力の効果を研究したりといったことが可能になるかもしれない。

The creation, trapping and storage of antihydrogen atoms for up to 1,000 seconds is reported online in Nature Physics this week. This achievement not only represents the longest time period so far that antihydrogen has been captured, but it also brings us closer to answering the question: ‘Do matter and antimatter obey the same laws of physics?’

Antimatter particles are routinely produced in particle accelerators as well as in space, but holding onto them, particularly the neutral ones, is the main difficulty. This is because antimatter and matter will annihilate on contact and conventional containers are made of matter. The ALPHA collaboration at CERN demonstrated last year that they could instead use a magnetic trap to capture antihydrogen particles, and managed to store them for 172 milliseconds. The team now increase that period by more than 5,000-fold, meaning that the antihydrogen atoms have time to reach their ground state, rather than only existing in the highly excited states created by previous experiments, in which they are quickly annihilated. Such long storage times allowed the first measurements of the characteristics of trapped anti-atoms, which provide information about the formation dynamics of antihydrogen atoms and their kinetic energy distribution.

Improved traps will potentially provide plenty of interaction time for future experiments to probe the anti-atoms’ quantum nature with lasers or microwaves, or to cool them down to study the gravitational effects on antimatter.

doi: 10.1038/nphys2025


メールマガジンリストの「Nature 関連誌今週のハイライト」にチェックをいれていただきますと、毎週各ジャーナルからの最新の「注目のハイライト」をまとめて皆様にお届けいたします。