Research press release


Nature Communications

Medical research: A digestible step forward in bio-engineered oesophagi



今回、Paolo Macchiariniたちは、その実現に向けた第一歩として、ラットモデルの食道の一部から細胞を取り除き、食道の機械的特性と生理活性を保持し、生体適合性を有する骨格を作り出した。そして、この骨格にラットの骨髄間葉系間質細胞を再び播種した。次に、元の食道から全長の20%に相当する部分を摘出し、そこに、この工学的に作製・再播種された外植片を移植した。



A tissue engineered oesophagus that can resist mechanical stress and is functional when implanted in to a rat, is reported in Nature Communications. This work could represent an important step towards the development of clinically successful bioengineered oesophageal replacements.

Every year a large number of individuals undergo surgical procedures to remove sections of oesophagus in response to oesophageal cancer, traumatic disorders or birth defects that affect the digestive tract. While a variety of surgical options are available to restore digestive function, most procedures are complex and associated with substantial complications, weight loss and mortality. An approach that uses bioengineered tissues to replace damaged segments would, in theory, avoid high-risk surgeries, be readily available, reduce side effects and improve long-term functional outcome.

In the first steps towards this, Paolo Macchiarini and colleagues stripped cells from a section of oesophagus in a rat model in order to create a biocompatible scaffold that retained mechanical and bioactive properties of the organ. This scaffold was then re-seeded with rat bone marrow mesenchymal stromal cells. A segment of the original oesophagus, representing 20% of the total length, could then be removed and replaced with the engineered, re-seeded graft in the living rat.

Post procedure, the team monitored the rats over a two-week period and, although the rats were initially immobile, the researchers noted that they quickly recovered and did not show any significant signs of pain or health impairment, organ rejection or adverse immunological responses. Additionally, several newly developed blood vessels and muscle fibres were found in the graft. Using a liquid and soft food diet post-surgery also led to notable weight gain in the animals when compared to a control group.

While the authors caution that the transplantation of only 20% of oesophageal length shown in this study might not be clinical useful and the functionality of the implant over longer periods of time remains to be demonstrated, the feasibility of this type of approach in smaller animals and over shorter time scales is promising and paves the way for evaluation in for larger animal models where total oesophageal replacement and longer follow-up may be possible.

doi: 10.1038/ncomms4562

「Nature 関連誌注目のハイライト」は、ネイチャー広報部門が報道関係者向けに作成したリリースを翻訳したものです。より正確かつ詳細な情報が必要な場合には、必ず原著論文をご覧ください。

メールマガジンリストの「Nature 関連誌今週のハイライト」にチェックをいれていただきますと、毎週最新のNature 関連誌のハイライトを皆様にお届けいたします。