Research press release


Nature Communications

Environment-assisted ultra-sensitive measurements

いわゆるハイゼンベルグ限界は、測定法の精度として達成可能な上限を意味するが、測定感度をこの限界に近づけるのは、当初考えられていたよりも単純なことかもしれないことが、理論研究で明らかになり、この結果を報告する論文が、今週、Nature Communicationsで発表される。量子もつれ状態は、生成することが非常に難しく、環境外乱(デコヒーレンス)に対して非常に敏感だが、この論文では、一般的な考え方とは異なり、量子もつれ状態を用いずにハイゼンベルグ限界に到達しうることが示されている。これにより、重力波検出や量子計測の分野で、より単純で、高感度な測定法が可能となるかもしれない。今回D BraunとJ Martinは、量子系の環境によって生じるデコヒーレンス過程が、破壊的な力として働くのではなく、集合的に量子系の測定感度を高めることができる、という測定原理を理論的に説明した。BraunとMartinは、この測定原理をフォトニック結晶、微小共振器に結合した量子ドットや光共振器中に捕捉された原子などのさまざまな系で実施できると考えている。

Achieving measurement sensitivities approaching the so-called Heisenberg limit — the finest precision that any measurement can possibly achieve — may be simpler than originally thought, a theoretical study published in Nature Communications this week reports. In contrast to common belief, quantum entangled states, which are very hard to produce and are very sensitive to environmental disturbances — or decoherence — may not be needed to reach this fundamental limit. This could allow for simpler and more sensitive measurements in areas such as gravitational wave detection and quantum metrology.Daniel Braun and John Martin theoretically describe a measurement principle where, rather than being a destructive force, decoherence processes induced by an environment on a system can collectively enhance the measurement sensitivity on the latter. The researchers envision that the measurement principle can be implemented in a variety of systems, such as photonic crystals, quantum dots coupled to micro-resonators, or atoms trapped in optical cavities.

doi: 10.1038/ncomms1220


メールマガジンリストの「Nature 関連誌今週のハイライト」にチェックをいれていただきますと、毎週各ジャーナルからの最新の「注目のハイライト」をまとめて皆様にお届けいたします。