Research press release


Nature Communications

Computer science: An optimum difficulty level for learning



今回、Robert Wilsonたちの研究グループは、トレーニングの難易度が学習速度に影響するかどうかを調べた。Wilsonたちは、一連の2値分類タスクに用いるアルゴリズムセットのための最適学習条件を導出した。この場合、学習ベースのアルゴリズムは、明確でない刺激(例えば、ランダムパターンをとる少数のコヒーレントドットの移動方向)を2つのグループのいずれかに分類できることが求められた。その結果、最適なエラー率は約15.87%で、逆の言い方をすれば、アルゴリズムの学習精度が約85%の時にトレーニングが最も速く進行することが分かった。また、最適精度でのトレーニングの方が、特定の難易度に固定されたトレーニングよりも速く進行することも分かった。


Learning occurs most quickly when the difficulty of the training is adjusted to keep the learner’s accuracy at around 85%, reports a computational study in Nature Communications. The findings could aid the development of a theory to identify the optimal settings for maximizing the rate of learning.

Researchers have debated questions around the optimum conditions for teaching for a number of years. However, it is unclear why a particular difficulty level may be beneficial for learning and what that optimal level might be.

Robert Wilson and colleagues examined whether the level of difficulty of training affects the rate of learning. The authors derived the conditions for optimal learning for a set of algorithms in a series of binary classification tasks. Here, learning-based algorithms had to classify ambiguous stimuli into one of two classes (for example, the direction of travel of a small number of coherent dots in a random pattern). They found that the optimal error rate was around 15.87%, or conversely, that training progressed most quickly when the algorithm’s learning accuracy was around 85%. They also found that training at the optimal accuracy proceeded faster than training at a fixed difficulty.

When applied to artificial networks used in artificial intelligence and a model from computational neuroscience that is thought to describe human and animal perceptual learning, the authors found that the optimal rate of learning followed their ‘Eighty Five Percent Rule’.

doi: 10.1038/s41467-019-12552-4

「Nature 関連誌注目のハイライト」は、ネイチャー広報部門が報道関係者向けに作成したリリースを翻訳したものです。より正確かつ詳細な情報が必要な場合には、必ず原著論文をご覧ください。

メールマガジンリストの「Nature 関連誌今週のハイライト」にチェックをいれていただきますと、毎週最新のNature 関連誌のハイライトを皆様にお届けいたします。