Research press release

物理学:液滴を液泡に戻す

Nature Communications

Physics: Turning drops back into bubbles

液泡が弾けて液滴が飛び出すというのは通常見られる現象だが、その逆、つまり液滴から液泡を形成させる方法について説明した論文が、今週掲載される。この新知見は、液体間界面の操作方法の発見に役立ち、ソフトマテリアルの作製に応用できる可能性もある。

音響浮揚は、液滴を音波の影響下において空中を浮遊させる場合の液滴ダイナミクスを研究するために用いられる一般的な技術だ。これまでの研究では、音圧を用いて液滴を薄膜状に平らにして、座屈を誘発することで液滴を変形させていた。

今回、Duyang Zangたちは、こうした過去の研究で観測された数々の効果を組み合わせて、制御された液泡形成を実現した。今回の研究では、まず音響放射力を用いて液滴を薄膜に変形させた後、超音波音場を用いて、この薄膜をお椀形に曲げ、その内部に共振空洞を形成させた。そして、共振によって空洞が大きくなり、その周囲に液体界面が曲面状に形成し、閉じた液泡が生じることが判明した。

今回の研究で観測された過程は、これまでとは別の液泡形成経路となる可能性があり、この新しい経路は、食品、化粧品、医薬品産業における泡の形成に応用できる可能性もある。

Although bubbles normally burst into droplets, a method to achieve the reverse phenomenon, that is, forming bubbles from droplets, is described in Nature Communications this week. The findings help identify strategies for the manipulation of fluid-fluid interfaces with potential applications in the fabrication of soft materials.

Acoustic levitation is a common technique used to study droplet dynamics by which a droplet can be made to hover in the air under the effect of sound waves. Acoustic pressure has previously been exploited to deform liquid drops by flattening them into a thin film and by inducing buckling.

Duyang Zang and colleagues combine these previously observed effects to achieve controlled bubble formation. They show that a droplet is first deformed into a thin film by acoustic radiation force. Next, the ultrasonic field causes the film to buckle into a bowl shape, which encloses a resonant cavity. The resonance causes the cavity to grow and the liquid interface to curve around it, creating a closed bubble, the authors find.

The observed process might offer an alternative route to bubble formation, which could have applications in foam preparations in the food, cosmetics and pharmaceutical industries.

doi: 10.1038/s41467-018-05949-0

「Nature 関連誌注目のハイライト」は、ネイチャー広報部門が報道関係者向けに作成したリリースを翻訳したものです。より正確かつ詳細な情報が必要な場合には、必ず原著論文をご覧ください。

メールマガジンリストの「Nature 関連誌今週のハイライト」にチェックをいれていただきますと、毎週最新のNature 関連誌のハイライトを皆様にお届けいたします。

「注目のハイライト」記事一覧へ戻る

プライバシーマーク制度