Research press release


Nature Physics

Physics: ATLAS experiment measurements support universal truth of particle physics

大型ハドロン衝突型加速器(LHC)のATLAS検出器が捉えた、素粒子物理学の標準模型の基本原理であるレプトンフレーバー普遍性についての測定結果を報告する論文が、Nature Physics に掲載される。この知見は、大型電子陽電子衝突型加速器で得られたそれまでの結果に取って代わるものである。


今回ATLAS Collaborationは、この「普遍的真理」がミューオンおよびタウ粒子とWボソンの結合にも当てはまるかどうか調べた。大型ハドロン衝突型加速器において、陽子–陽子衝突で生成されたトップクォークの崩壊からWボソンのきれいなサンプルが得られ、LHCのATLAS検出器で記録された。著者たちは、タウ粒子とミューオンへのWボソンの崩壊率の比を測定することによって、弱い力は両方の種類のレプトンと同じように相互作用すると結論付けることができた。

ATLAS Collaborationによって得られたこの結果は、LHCによるそうした測定の最初のものであり、LHCの前身である大型電子陽電子衝突型加速器の実験で得られた精度を上回っており、これまでで最も正確なものである。

A measurement of a fundamental principle of the standard model of particle physics — lepton flavour universality — captured by the ATLAS detector at the Large Hadron Collider is reported in a paper published in Nature Physics. The findings supersede the long-standing result from the Large Electron–Positron Collider.

Our understanding of elementary particles — the building blocks of the Universe — and the electromagnetic, weak and strong fundamental forces that act between them is formulated in the standard model of particle physics. Leptons are a type of elementary particle. Electrons, muons and τ leptons represent three varieties (or flavours) of charged leptons. The standard model assumes that the couplings of particles that mediate the weak force — known as ‘W’ or ‘Z’ electroweak gauge bosons — to leptons occurs irrespective of their flavour. This is known as lepton flavour universality.

The ATLAS Collaboration studied whether this ‘universal truth’ holds true for the coupling of the muon and the τ lepton to the W boson. A clean sample of W bosons was obtained from the decay of top quarks produced in proton–proton collisions and recorded with the ATLAS detector at the Large Hadron Collider. By measuring the ratio of the W decay rates to a τ lepton and to a muon, the authors were able to conclude that the weak force interacts with both types of lepton in the same way.

This result from the ATLAS Collaboration is the first such measurement from the Large Hadron Collider, and the most precise one to date, surpassing the precision obtained from experiments at the Large Hadron Collider’s predecessor — the Large Electron–Positron Collider.

doi: 10.1038/s41567-021-01236-w


メールマガジンリストの「Nature 関連誌今週のハイライト」にチェックをいれていただきますと、毎週各ジャーナルからの最新の「注目のハイライト」をまとめて皆様にお届けいたします。