Research press release



宇宙空間で運用されている初めてのイオントラップ型原子時計について報告する論文が、今週、Nature に掲載される。この原子時計は、現在の宇宙時計より優れた性能であることが実証された。この性能レベルであれば、この技術を用いて、深宇宙探査機のほぼリアルタイムでの航法が可能になることが示された。


2019年、NASAは「ディープ・スペース・アトミック・クロック(DSAC)」と名付けられたイオントラップ型原子時計を地球周回軌道に打ち上げた。今回、Eric Burtたちの研究チームは、この原子時計の稼働1年目のデータを提示している。この原子時計は、試験開始直後に故障したものの、その短期安定性と長期安定性は、現在の宇宙時計の最大10倍に達した。また、時計の性能が、輻射、温度、磁場の変動によって制約されることはないようで、宇宙の極限環境での作動に適した時計になっている。


The first trapped-ion atomic clock to be operated in space, reported in Nature, is shown to outperform current space clocks. The level of performance indicates that this technology could be used to enable near-real-time navigation of deep space probes.

The atomic clocks currently used in space rely on atoms confined in a box to serve as a meter for the clock. The long-term stability of these clocks is hampered by the atoms colliding with the walls of the box. This effect is overcome in trapped-ion atomic clocks in which charged atoms are confined electromagnetically, thereby eliminating wall collisions.

In 2019, NASA launched a trapped-ion clock, named the Deep Space Atomic Clock, into orbit around Earth. Eric Burt and colleagues present data from the first operating year of this clock. Despite developing a fault shortly after testing began, its short- and long-term stability still exceeds that of current space clocks by up to ten times. Variations in radiation, temperature and magnetic fields did not seem to limit the performance of the clock, making it suitable for operation in the extreme environment of space.

The Deep Space Atomic Clock currently has a life expectancy of 3–5 years, but work is being done to extend this to 10 years or beyond, the authors note. Ongoing investigations and development of this technology could open up applications in one-way navigation for deep space exploration.

doi: 10.1038/s41586-021-03571-7

「Nature 関連誌注目のハイライト」は、ネイチャー広報部門が報道関係者向けに作成したリリースを翻訳したものです。より正確かつ詳細な情報が必要な場合には、必ず原著論文をご覧ください。

メールマガジンリストの「Nature 関連誌今週のハイライト」にチェックをいれていただきますと、毎週最新のNature 関連誌のハイライトを皆様にお届けいたします。