Research press release



Physics: Atomic clocks to better measure space-time distortion




今回William McGrewたちの研究グループは、3つの基本的ベンチマークに照らして、2つのイッテルビウム光格子時計の特徴を明らかにした。クロック周波数の単位で、システム不確実性が1.4 × 10^-18、計測不安定性が3.2 × 10^-19であることが判明し、局部周波数の反復的比較によって得られた再現性は、時計間の周波数差が10^-19のオーダーだった。このような性能によって、ジオイドを1センチメートル未満の不確実性で決定でき、現在の技術より高い性能が達成された。

Next-generation optical atomic clocks could measure the gravitational distortion of space-time across the Earth’s surface more precisely than current methods, reports a paper published online this week in Nature. These clocks can be used to detect gravitational waves, test general relativity, and search for dark matter.

The passage of time is not absolute; it depends on the given frame of reference. As a result, clock measurements are sensitive to relative velocity, acceleration, and gravity potential - clocks atop mountains tick faster than those at ground level because of increased gravity potential. A common reference surface is required to compare clocks at different points in a gravity field. On Earth, this is the geoid - the surface of equal potential that best fits the global-mean sea level - which is currently determined from height measurements by the Global Navigation Satellite System and a geoid model to factor in gravity. Both are currently limited by uncertainties of several centimetres, which could be reduced by using atomic clocks.

Atomic clocks are based on measurements of specific atomic transitions at optical frequencies. The next generation of atomic clocks will be so sensitive to the relativistic effects of gravity that they could be used as geopotential probes.

William McGrew and colleagues characterize two ytterbium optical lattice clocks according to three fundamental benchmarks. They report, in units of the clock frequency, a systematic uncertainty of 1.4 × 10^-18, a measurement instability of 3.2 × 10^-19 and, through repeated local frequency comparisons, a reproducibility yielding a frequency difference between the clocks of the order of 10-19. Such performance would allow geoid determinations with less than one centimetre uncertainty, outperforming current techniques.

doi: 10.1038/s41586-018-0738-2|英語の原文

「Nature 関連誌注目のハイライト」は、ネイチャー広報部門が報道関係者向けに作成したリリースを翻訳したものです。より正確かつ詳細な情報が必要な場合には、必ず原著論文をご覧ください。


メールマガジンリストの「Nature 関連誌今週のハイライト」にチェックをいれていただきますと、毎週最新のNature 関連誌のハイライトを皆様にお届けいたします。