Research press release





今回、Maike Lachmann、Ernst Raselたちの研究グループは、観測ロケットミッションMAIUS-1(微小重力状態での物質波干渉測定)のロケット飛行中に、自由落下状態のボース・アインシュタイン凝縮体を宇宙空間で初めて生成した。この凝縮体の能力は、地上で生成されたものに十分匹敵し、1.6秒で約10万個の原子を生成できる。著者たちは、6分間の宇宙飛行の間に100以上の実験を実施した。これらの実験によって得られた知見は、宇宙空間での冷却原子実験に関する理解を深める上で役立ち、量子気体実験にとって新時代の幕開けとなる可能性もある。

The first creation of a Bose-Einstein condensate in space is reported this week in Nature. Insights gained from the experiments performed with the condensate could support the development of space-based gravitational-wave detectors.

A Bose-Einstein condensate is a state of matter that forms when a low-density gas of atoms is cooled to temperatures close to absolute zero and collapses into a very dense, quantum state. The properties of such states make them ideal for sensing very small inertial forces, and they can be used to measure accelerations from gravity - and keeping the atoms in free-fall increases the sensitivity of these measurements. Studies of quantum systems such as Bose-Einstein condensates can help to increase our understanding of gravitational waves, general relativity and quantum mechanics.

Maike Lachmann, Ernst Rasel, and colleagues have created the first space-based Bose-Einstein condensate, in free-fall, on board the sounding rocket mission MAIUS-1 (Matter-Wave Interferometry in Microgravity). The performance of the condensate compares well to ground-based creations, producing around 105 atoms in 1.6 seconds, and the authors were able to perform more than 80 experiments during the six-minute space flight. The insights from these experiments help to increase our understanding of conducting cold-atom experiments in space, and could lead to a new era for quantum gas experiments.

doi: 10.1038/s41586-018-0605-1

「Nature 関連誌注目のハイライト」は、ネイチャー広報部門が報道関係者向けに作成したリリースを翻訳したものです。より正確かつ詳細な情報が必要な場合には、必ず原著論文をご覧ください。

メールマガジンリストの「Nature 関連誌今週のハイライト」にチェックをいれていただきますと、毎週最新のNature 関連誌のハイライトを皆様にお届けいたします。