Research press release



Earth sciences: Forecasting the pattern of aftershocks



今回、Phoebe DeVriesたちの研究グループは、13万1000組以上の地震と余震の組み合わせのデータを使ってニューラルネットワークを訓練した。このニューラルネットワークを使って、別の独立した3万組以上の地震と余震の組み合わせのデータについて調べたところ、余震の発生位置のパターンをクーロン破壊応力の変化よりも正確に同定し説明できることが示された。DeVriesたちは、今回の知見から、深層学習によって余震の予測がいかに改善され、地震誘発機序の解明への手掛かりがもたらされ得るかが明確になったと主張している。

A machine learning approach has been used to identify a stress-based law that can forecast the pattern of aftershock locations following large earthquakes. The findings are reported in this week’s Nature.

Aftershocks are a response to seismic stress changes generated by large earthquakes, and empirical laws exist that describe their size and frequency. However, explaining and forecasting the location of aftershocks has proved more difficult. Previously, a factor called Coulomb failure stress change (based on the transfer of stress during an earthquake to surrounding material) has been used to explain aftershock locations, but its applicability has been disputed.

Phoebe DeVries and colleagues trained a neural network using data from more than 131,000 pairs of earthquakes and aftershocks. They found that their network was able to identify and explain the pattern of aftershock locations in an independent dataset of more than 30,000 earthquake-aftershock pairs more accurately than can Coulomb failure stress change. The authors argue that the findings highlight how deep learning approaches can lead to improved aftershock forecasts and provide insights into the mechanisms of earthquake triggering.

doi: 10.1038/s41586-018-0438-y|英語の原文

「Nature 関連誌注目のハイライト」は、ネイチャー広報部門が報道関係者向けに作成したリリースを翻訳したものです。より正確かつ詳細な情報が必要な場合には、必ず原著論文をご覧ください。


メールマガジンリストの「Nature 関連誌今週のハイライト」にチェックをいれていただきますと、毎週最新のNature 関連誌のハイライトを皆様にお届けいたします。