Research press release





今回、Dori Halbertalの研究チームは、極めて低いエネルギー散逸過程の熱的特徴を既存の方法より高い分解能と感度で画像化できるSQUID-on-tip(鋭利なピペットの先端に取り付けた超伝導量子干渉デバイス)を開発した。そして、このナノスケールの温度計を使って、カーボンナノチューブとグラフェンにおける散逸の画像化が行われた。

The ability to observe energy dissipation in a quantum system is demonstrated in a study published online this week in Nature. The cryogenic thermal imaging technique reported in the paper may help uncover new insights into the microscopic behaviour of quantum systems, such as those used for the storage of quantum information.

Dissipation - the irreversible transformation of energy from one form into another (essentially unusable) form - is one of the main characteristics that distinguish quantum and classical phenomena. Dissipation demolishes quantum information and therefore needs to be very weak to preserve a quantum state, making dissipation difficult to measure. Existing techniques for imaging such energy flows are not sufficiently sensitive and are unable to operate at the extremely low temperatures required for studying quantum systems.

Dori Halbertal and colleagues developed a superconducting quantum interference device mounted on the tip of a sharp pipette (SQUID-on-tip) capable of imaging the thermal signature of extremely-low-energy dissipation processes with much greater resolution and sensitivity than existing methods can. The authors use their nanoscale thermometer to image dissipation in carbon nanotubes and graphene.

doi: 10.1038/nature19843

「Nature 関連誌注目のハイライト」は、ネイチャー広報部門が報道関係者向けに作成したリリースを翻訳したものです。より正確かつ詳細な情報が必要な場合には、必ず原著論文をご覧ください。

メールマガジンリストの「Nature 関連誌今週のハイライト」にチェックをいれていただきますと、毎週最新のNature 関連誌のハイライトを皆様にお届けいたします。