Research press release







The first demonstration of proton-driven plasma wakefield acceleration is reported online this week in Nature. The results represent a step towards the development of future high-energy particle accelerators.

High-energy particle accelerators have been crucial in providing a deeper understanding of fundamental particles, and plasma wakefield acceleration has the potential to usher in a generation of more powerful, smaller particle accelerators. Ordinarily, the technique delivers high-energy acceleration by using an intense laser pulse or a bunch of electrons to create a plasma wave (wakefield) that particles such as electrons can ride in order to achieve large acceleration and high energy gains.

The AWAKE Collaboration presents the first demonstration of proton-driven plasma wakefield acceleration - where it is bunches of protons that drive the wakefield into which electrons are injected. The use of protons can result in electron acceleration to higher energies in a single accelerating stage, rather than the multiple stages required by other plasma wakefield acceleration techniques. The authors measured electrons accelerated up to 2 gigaelectronvolts (GeV) in ten metres of plasma.

Although still in the early stages of research, the results from this inaugural test of proton-driven plasma acceleration are highly encouraging.

doi: 10.1038/s41586-018-0485-4

「Nature 関連誌注目のハイライト」は、ネイチャー広報部門が報道関係者向けに作成したリリースを翻訳したものです。より正確かつ詳細な情報が必要な場合には、必ず原著論文をご覧ください。

メールマガジンリストの「Nature 関連誌今週のハイライト」にチェックをいれていただきますと、毎週最新のNature 関連誌のハイライトを皆様にお届けいたします。