極低温電子デバイスにおける熱放散機構
Nature Materials
How heat dissipates in cryogenic electronics
極めて低い温度で動作する電子デバイスは、通常の電子デバイスと異なる機構で熱を放散するという報告が、今週号に掲載される。この機構は今回初めて観測されたものだが、顕著な自己加熱をもたらすため、例えば宇宙船用などの極低温電子デバイスで実現可能な限界感度に影響が出る可能性がある。
そうした極低温デバイスは、高精度・低エネルギー・低ノイズ用途に用いられるが、熱放散と自己加熱機構の両方がデバイス性能の劣化につながる可能性があるので、デバイスの部品がどのように熱を放散するのかを理解することが極めて重要である。通常の状況下で温度が約25℃の場合、加熱すると電子部品を構成する結晶が振動する。この振動が結晶の欠陥や界面で減衰することによって熱が放散される。
今回Austin Minnichたちは、極低温電子デバイスで実現される非常に低い温度(約-260℃)の場合、通常とは全く異なる「フォノン黒体放射」と呼ばれる機構で熱放散が起こることを見いだした。フォノン黒体放射は、加熱に起因する振動が結晶と相互作用せずに放射を放出するときに起こる。この新しく観測された熱放散機構はかなりの自己加熱につながるため、極低温電子デバイスの最低動作温度は制限され、それによって実現可能な最小感度が制限される。
Electronics that operate at extremely low temperatures dissipate heat via a different mechanism than conventional electronics, reports a study in Nature Materials. This is the first observation of this mechanism, which results in significant self-heating, and could potentially impact the ultimate sensitivity achievable in cryogenic electronics, such as those used on space crafts.
Such cryogenic electronics are used in high-accuracy low-energy and low-noise applications and understanding how their components dissipate heat is of paramount importance, as both heat dissipation and mechanisms of self-heating can result in the degradation of a device’s performance. Under normal circumstances, and at a temperature of approximately 25 degrees Celsius, heating causes the crystals, which make up electronic components, to vibrate. Heat escapes through the damping of these vibrations at defects and interfaces of the crystals.
Austin Minnich and colleagues find that, at the very low temperatures achieved in cryogenic electronics (approximately -260 degrees Celsius), heat dissipation occurs by a completely different mechanism, called ‘phonon black-body radiation’. Phonon black-body radiation occurs when vibrations, caused by heating, emit radiation without any interaction with the crystals. This newly observed mechanism of heat dissipation results in considerable self-heating, which limits the minimum temperature that these electronics can operate at. This then limits the minimal achievable sensitivity of cryogenic electronic devices.
doi: 10.1038/nmat4126
「注目のハイライト」は、ネイチャー広報部門が報道関係者向けに作成したプレスリリースを翻訳したものです。より正確かつ詳細な情報が必要な場合には、必ず原著論文をご覧ください。
注目のハイライト
メールマガジンリストの「Nature 関連誌今週のハイライト」にチェックをいれていただきますと、毎週各ジャーナルからの最新の「注目のハイライト」をまとめて皆様にお届けいたします。