Research press release


Nature Materials

Materials: Seeing the evolution of red-hot cracks

X線コンピューター・マイクロトモグラフィーは、サンプルにさまざまな角度からX線を照射して得た数百枚もしくは数千枚の断面からデジタルレプリカを再構成する技術であり、生体組織や硬質構造材料を破壊せずに画像化するために広く利用されている。しかし、高性能材料を1,000℃を超える温度、引張もしくは圧縮荷重、腐食性物質の存在といった想定使用条件下で画像化する装置を設計することは困難であった。このたびRobert Ritchieらは、厳しい環境条件下におかれたセラミックス母材や繊維系複合材料中で進行するクラックを、数マイクロメートルから数ミリメートルの範囲で、高解像度・リアルタイムでスキャンする装置を設計した。その装置を用いることによって、微小クラックの経路、クラックの表面積や方向などの情報が得られる。


The quantitative imaging of microcrack evolution in ceramic materials under load, at extreme temperatures, and in corrosive environments, is reported online in Nature Materials this week. Made possible by a specially designed X-ray computed-tomography set-up, the findings may help advance the design of stronger and tougher microstructured materials for high-performance aerospace applications.

In X-ray computed microtomography, which is widely used to image body tissues or hard structural materials without destroying them, a digital replica of the sample is reconstructed from hundreds or even thousands of slices collected from the penetrating X-rays beamed at different angles. However, it has been challenging to design a device that allows imaging of high-performance materials at the conditions they are designed to work at, such as temperatures above 1,000 oC, under tensile or compressive loads, and in the presence of corrosive species. Robert Ritchie and colleagues designed equipment that scans, at high resolution and in real time, microcrack paths, and crack surface areas and orientations, from micrometres to several millimetres, in ceramic-matrix and textile-based composites in hostile environmental conditions.

The wealth of information that the technique can generate can contain vital information on the underlying failure mechanisms of these materials.

doi: 10.1038/nmat3497

「Nature 関連誌注目のハイライト」は、ネイチャー広報部門が報道関係者向けに作成したリリースを翻訳したものです。より正確かつ詳細な情報が必要な場合には、必ず原著論文をご覧ください。

メールマガジンリストの「Nature 関連誌今週のハイライト」にチェックをいれていただきますと、毎週最新のNature 関連誌のハイライトを皆様にお届けいたします。