Research press release

深層学習診断の新次元

Nature Medicine

A new dimension for deep-learning diagnoses

急性の神経学的事象や網膜疾患の3D医用画像に基づく正確で迅速な自動化診断が、新しい深層学習アルゴリズムによって実現する可能性が、2つの研究グループから報告された。

 2D医用画像からのさまざまな病気の診断は、深層学習を使う手法によって可能になっているが、より複雑で詳細な3D画像からでも診断が行えるのかどうかは明らかになっていなかった。臨床医が行う多くの医学診断は、体積情報も含んだ画像に助けられている。3D画像によって診断を下せる深層学習アルゴリズムが構築されたことで、この技術は人間の専門家と同等な成績の達成へと一歩近づいた。

 E Oermannたちは、3万7200例を超える頭部CT(コンピューター断層撮影)画像を新しい3D CNN(3D convolutional neural network:三次元たたみ込みニューラルネットワーク)法を使って解析した。この方法によって卒中や出血といった急性の神経学的事象の存在が正確に診断され、このシステムによって診断が加速される可能性があることが、臨床応用シミュレーションによって明らかになった。

 一方、O Ronnebergerたちは深層学習システムを構築し、光干渉断層撮影(OCT)による目の走査画像を解析して、網膜疾患を95%の正確さで診断した。このシステムでは3D画像の領域分割と病気の診断とを分けて行うので、多様な画像化装置で得られた複雑な医用画像で正確なパフォーマンスが可能になっている。

 これら2つの相補的研究では、3D医用画像の迅速な解析への深層学習アルゴリズムの適用が成功しており、このようなシステムを使って迅速で正確な診断を行うことで臨床業務の流れが改善されそうだ。

Accurate, rapid and automated diagnoses of acute neurological events and retinal disease based on 3D medical images can be provided by new deep-learning algorithms, report two separate studies published online this week in Nature Medicine.

Deep-learning approaches can diagnose various diseases from 2D medical images, but whether this could also be achieved on complex, detailed 3D images has remained unclear. As volumetric imaging contributes to many medical diagnoses made by practising clinicians, the successful implementation of deep-learning algorithms to make diagnosesvia 3D images may bring this technology one step closer to achieving performance equivalent to a human expert.

Eric Oermann and colleagues analyze more than 37,200 head computed tomography (CT) scans using a new convolutional neural network approach. They accurately diagnose the presence of acute neurological events, such as strokes or hemorrhages, and show that this system could accelerate diagnosis times by simulating a clinical application.

In a separate study, Olaf Ronneberger and colleagues develop a deep-learning architecture to analyse optical coherence tomography (OCT) eye scans and diagnose retinal disease with 95% accuracy. Their system performs separate 3D image segmentation and disease diagnosis, which enables accurate performance on complex medical scans acquired by different imaging devices.

These complementary studies successfully apply deep-learning algorithms to the rapid analysis of 3D medical images, which suggests that these systems can potentially improve clinical workflows by providing fast but accurate diagnoses.

doi: 10.1038/s41591-018-0107-6

「Nature 関連誌注目のハイライト」は、ネイチャー広報部門が報道関係者向けに作成したリリースを翻訳したものです。より正確かつ詳細な情報が必要な場合には、必ず原著論文をご覧ください。

メールマガジンリストの「Nature 関連誌今週のハイライト」にチェックをいれていただきますと、毎週最新のNature 関連誌のハイライトを皆様にお届けいたします。

「注目のハイライト」記事一覧へ戻る

プライバシーマーク制度