Research press release


Scientific Reports

Influenza: Improving flu predictions using “big data”

Google Flu Trendsの「ビッグデータ」を従来の監視方法に組み込むことでインフルエンザの蔓延に関する予測が改善されるという結論を示す論文が、今週掲載される。これら2つの方法を組み合わせることで、1週間後の米国でのインフルエンザ感染状況を予測できることが実証されたのだ。この新知見は、地域レベルと国レベルでのインフルエンザ流行の予防と管理に重大な影響を与える可能性がある。

米国では、毎年、人口の約5~20%が季節性インフルエンザに感染し、20万人以上が入院している。感染レベルの正確な評価と感染リスクの高い地域の予測は、対象を絞った予防と治療を行ううえで役立つ。Google Flu Trendsでは、検索クエリデータを使って、インフルエンザの流行状況を即時に推定でき、従来の監視システムより2週間早く結果が得られる。従来の監視システムでは、インフルエンザの疑いのある症例数と確認された症例数のデータを集め、患者から採取したインフルエンザウイルスの分類を行っている。

Michael Davidsonたちの報告によれば、これまでのGoogle Flu Trendによる即時トレンド予測には精度のばらつきがあったが、確立された監視システムを併用することで、実際のインフルエンザ症例の推定を改善できるとされる。Davidsonたちは、こうした改善が得られる理由として、社会的ネットワーク分析から取り入れた方法の利用を挙げている。つまり、インフルエンザが流行している地理的領域をつなげてネットワークを構築することで、将来の蔓延の予測を改善できることが明らかになったのだ。この新しいモデルは、従来のデータ収集の正確さとGoogle Flu Trendsによる即時予測という2つの利点を兼ね備えている。

Predictions of influenza spread can be improved by integrating “big data”, in the form of Google Flu Trends, into traditional surveillance methods, a study in Scientific Reports proposes. Combining the two systems can predict US influenza infections one week into the future, the study demonstrates. The findings may have implications for the prevention and control of influenza outbreaks at a local and national level.

Seasonal influenza infects approximately 5-20% of the US population every year, resulting in over 200,000 hospitalizations. Accurate assessments of infection levels and predicting which regions have higher infection risk can assist targeted prevention and treatment efforts. Google Flu Trends uses search query data to estimate influenza activity in real-time - two weeks earlier than traditional surveillance, which gathers data on the number of potential and confirmed influenza cases and classifies the influenza viruses collected from patients.

Although Google Flu Trends has not consistently predicted real-time trends, using it in conjunction with established monitoring systems can produce better estimates of actual cases of influenza, Michael Davidson and colleagues report. They attribute these improvements to the use of methods borrowed from social network analysis, which they use to construct networks of connected geographic regions affected by influenza that allow for better predictions of future spread. The new model benefits from both the accuracy of traditional data collection and the real-time predictions generated by Google Flu Trends.

doi: 10.1038/srep08154

「Nature 関連誌注目のハイライト」は、ネイチャー広報部門が報道関係者向けに作成したリリースを翻訳したものです。より正確かつ詳細な情報が必要な場合には、必ず原著論文をご覧ください。

メールマガジンリストの「Nature 関連誌今週のハイライト」にチェックをいれていただきますと、毎週最新のNature 関連誌のハイライトを皆様にお届けいたします。