Research press release


Scientific Reports

Materials: Taking 3D printing to a fourth dimension


今回、Dan Ravivたちは、プリントされた後に形状が変わる材料を用いて、第四次元、つまり時間の次元を導入した。Ravivたちの方法は、特性の異なる材料(剛性を失わない材料と元の体積の最大200%まで膨張する材料)を用いた3Dプリンティングによって3D構造を作製するというものだ。この膨張性を有する材料は、主構造上に戦略的に配置することができ、水によって活性化すると、折り曲げストローのように伸び縮みし、屈曲して、複雑な幾何学的配置に基づいた形状を幅広く作製できるようになる。今回の研究では、例えば、3Dプリンティングで作製されたアルファベットの“MIT”に似た形状を“SAL”に似た形状に変化させた。また、Ravivたちは、時間の経過とともに折れ曲がったり伸び縮みしたりして、複雑な幾何学的変形を起こす新しい構造をいくつか設計した。いくつかの2D格子がプリントされ、水に浸すと湾曲した形状になるようにあらかじめプログラムされた複数の変形パターンについて検証が行われた。


The introduction of a fourth dimension into 3D-printed materials, producing dynamic structures that can change shape in response to their environment, is described in Scientific Reports this week. This technique may prove to be useful for medical applications based on soft robotics. The materials can stretch, fold and bend into predetermined shapes when submerged in water, thereby altering property and function of the material post-fabrication, in contrast to conventional 3D printing, where the outcome remains static.

Dan Raviv and colleagues introduce a fourth dimension - time - by using materials that can change shape after they have been printed. Their approach prints 3D structures using materials with different properties: one that remains rigid and another that expands up to 200% of the original volume. The expanding materials can be placed strategically on the main structure to produce joints that can stretch and fold like a bendy straw when activated by water to produce a broad range of shapes with complex geometries. For example, a 3D-printed shape that resembles the initials “MIT” is shown to evolve into another formation that looks like the initials “SAL”. They further designed several new structures that can bend and stretch to form complex geometry deformations in time. Several 2D grids were printed and tested for different pre-programmed deformations, forming curved shapes when placed in water.

The transformations can be reproduced over a few wetting and drying cycles, but repeated folding and unfolding can lead to degradation of the materials. Further testing is required to fully understand the lifespan of these dynamic materials, and the authors note that other activating stimuli, such as heat and light, could also be used to achieve similar effects.

doi: 10.1038/srep07422

「Nature 関連誌注目のハイライト」は、ネイチャー広報部門が報道関係者向けに作成したリリースを翻訳したものです。より正確かつ詳細な情報が必要な場合には、必ず原著論文をご覧ください。

メールマガジンリストの「Nature 関連誌今週のハイライト」にチェックをいれていただきますと、毎週最新のNature 関連誌のハイライトを皆様にお届けいたします。