Research press release

物理学:ガラスの振る舞いを調べるAIマップ

Nature Physics

Physics: AI maps probes the heat of glass

機械学習を用いることで、さまざまな温度と圧力の制約の下でのガラスの振る舞いを、ガラスを作っている個々の粒子の最初の位置のみに基づいて予測できると報告した論文がNature Physics に掲載される。今回の知見によって、粉粒体、コロイド懸濁液、生物の細胞などのさまざまな系の力学的性質をより深く理解できる可能性がある。

ガラス質系は、固体として振る舞うことが多いが、微視的なレベルでは液体のように見える。つまり、ガラス質系の粒子は、不規則に配置されているのである。ガラスのダイナミクスが極めて遅いことの正確な原因の解明は、かねてから物理学と材料科学が直面している課題となってきた。

今回、Victor Bapstたちは、グラフニューラルネットワークと呼ばれる種類の機械学習モデルを使って、ガラス質系のダイナミクスを予測した。そして彼らは、ガラス質系の特徴とそれに対応する物理的特性を、その系の粒子の種類と位置だけを入力として使って学習するアルゴリズムを開発した。最も注目すべきなのは、この方法が、すぐに近くにある粒子間の相互作用と遠く離れた粒子間の相互作用のどちらも捉えることである。従って、このアルゴリズムは、再配置する粒子の位置と動きを、さまざまな温度圧力、密度の範囲で非常に長い時間スケールにわたって予測できので、その性能は、この問題の研究に使われる既存の機械学習法より優れている。

著者たちは、このアルゴリズムは、ガラス以外の他の系に適用するのに十分ロバストである可能性があると結論付けている。

Machine learning can be used to predict the behaviour of glass under different temperature and pressure constraints based solely on the initial positions of the individual particles it is made of, reports a paper published this week in Nature Physics. These findings may provide a deeper understanding of the mechanical properties of a range of systems including granular materials, colloidal suspensions and biological cells.

Glassy systems typically behave as solids, yet appear like liquids on the microscopic level. Their particles are arranged in a disordered manner. Understanding the precise causes for the extremely slow dynamics of glasses has long been a challenge facing physicists and materials scientists.

Victor Bapst and colleagues use a category of machine learning models known as graph neural networks to predict the dynamics of glassy systems. The authors developed an algorithm that learns a glassy system’s features and corresponding physical properties by using the system’s type of particles and position as the only input. Most notably, this method captures the interactions between particles that are both close together and farther apart. Therefore, the algorithm can predict the locations and movement of the rearranging particles over very long time scales, for a range of different temperatures, pressures and densities. As such, it outperforms existing machine learning approaches used to study this problem.

The authors conclude that this algorithm may be robust enough to apply to other systems beyond glasses.

doi: 10.1038/s41567-020-0842-8

「Nature 関連誌注目のハイライト」は、ネイチャー広報部門が報道関係者向けに作成したリリースを翻訳したものです。より正確かつ詳細な情報が必要な場合には、必ず原著論文をご覧ください。

メールマガジンリストの「Nature 関連誌今週のハイライト」にチェックをいれていただきますと、毎週最新のNature 関連誌のハイライトを皆様にお届けいたします。

「注目のハイライト」記事一覧へ戻る

プライバシーマーク制度