Research press release

自殺しそうな人を機械学習法を使って見つける

Nature Human Behaviour

Using machine learning to identify suicidal patients

自殺念慮のある患者と自殺の意思のない人の精度の高い判別が、死および生に関連する概念の脳内表現に機械学習法を利用することで可能となることが今週報告される。この方法では、過去に自殺を試みたことのある自殺念慮者とそれ以外の人を判別することもできる。

世界保健機関(WHO)の統計によれば、年間約80万人が自殺によって死亡している。自殺リスクの評価は、精神保健臨床家が直面する最も困難な課題である。自殺を試みる患者たちは死にたいという自らの意図を隠すことが多い一方で、臨床家たちによる自殺リスクの予測は精度が低いことが分かっているためである。従って、自己報告に頼らない自殺リスクの指標が切実に求められている。

Marcel Justの研究グループは、機能的磁気共鳴画像法(fMRI)スキャンを受けている自殺企図患者群および対照者に対し、死に関連する単語、および生に関連する単語を見せた。その結果、6つの単語(死、残酷、問題、気楽、善行、称賛)に反応する神経活動が自殺企図患者と対照者で明瞭に異なる5つの脳内部位を見いだすことができた。次に研究グループは、得られた情報を使って、どの被験者が患者であり、どの被験者が対照者であるかが見分けられるように機械学習アルゴリズムを訓練した。その結果、このアルゴリズムは、患者17人中15人が自殺企図群に属する者であり、また健常者17人中16人が対照群に属する者であると正しく判別した。さらに研究グループは、自殺を試みた集団(9人)と試みなかった集団(8人)の2群からなる自殺企図患者集団について調査を続けた。そして17例中16例について自殺企図者と非企図者を正しく区別するアルゴリズムを得た。

今回の研究は、対象とした人数が少ないので繰り返して確認される必要がある。しかしながら、関連するNews & ViewsでBarry Horwitzが述べているように、他の精神疾患集団において同様の結果が再現され拡張される場合、今回の方法および類似の機能的磁気共鳴画像法は、神経精神疾患の診断を可能とする重要な医学的ツールとなる可能性がある。

Patients with suicidal ideation can be distinguished from non-suicidal individuals with high accuracy by applying machine-learning techniques to the representation of death- and life-related concepts in the brain, reports a paper published online this week in Nature Human Behaviour. This method can also distinguish between suicidal ideators who have made a suicide attempt from those who have not.

According to the World Health Organization, close to 800,000 people die by suicide every year. The assessment of suicide risk is among the most challenging problems facing mental health clinicians: suicidal patients frequently disguise their intention to commit suicide, while clinicians’ predictions of suicide risk have shown to be poor. Markers of suicide risk that do not rely on self-reports are therefore much needed.

Marcel Just, David Brent, and colleagues presented suicidal patients and control individuals undergoing functional magnetic resonance imaging (fMRI) scans with death- and life-related words. They found that neural activity in response to six of the words (death, cruelty, trouble, carefree, good and praise) and in five brain locations best discriminated between the suicidal patients and controls. The authors then trained a machine-learning algorithm to use this information to identify which participants were patients and which were controls. The algorithm correctly identified 15 of 17 patients as belonging to the suicide group and 16 of 17 healthy individuals as belonging to the control group. The authors went on to investigate just the suicidal patients, who were divided into two groups: those who had attempted suicide (nine participants) and those who had not (eight participants). The authors trained a new algorithm that correctly distinguished between suicide attempters and non-attempters in 16 out of 17 cases.

The study’s small sample size necessitates replication. However, as Barry Horwitz notes in an accompanying News & Views, if replicated and extended to other psychiatric populations, the method developed by Just and colleagues and similar functional neuroimaging methods have the potential to become a major medical tool for the diagnosis of neuropsychiatric disorders.

doi: 10.1038/s41562-017-0234-y

「Nature 関連誌注目のハイライト」は、ネイチャー広報部門が報道関係者向けに作成したリリースを翻訳したものです。より正確かつ詳細な情報が必要な場合には、必ず原著論文をご覧ください。

メールマガジンリストの「Nature 関連誌今週のハイライト」にチェックをいれていただきますと、毎週最新のNature 関連誌のハイライトを皆様にお届けいたします。

「注目のハイライト」記事一覧へ戻る

プライバシーマーク制度