Research Abstract


Fear reduction without fear through reinforcement of neural activity that bypasses conscious exposure

2016年11月21日 Nature Human Behaviour 1 : 6 doi: 10.1038/s41562-016-0006



Ai Koizumi, Kaoru Amano, Aurelio Cortese, Kazuhisa Shibata, Wako Yoshida, Ben Seymour, Mitsuo Kawato & Hakwan Lau

Corresponding Authors

川人 光男
ATR 脳情報通信総合研究所、国立研究開発法人情報通信研究機構 CiNet、国立研究開発法人理化学研究所

Ben Seymour
ATR 脳情報通信総合研究所、国立研究開発法人情報通信研究機構 CiNet、ケンブリッジ大学

Hakwan Lau

Fear conditioning is a fundamentally important and preserved process across species. In humans it is linked to fear-related disorders such as phobias and post-traumatic stress disorder (PTSD). Fear memories can be reduced by counter-conditioning, in which fear conditioned stimuli (CS+s) are repeatedly reinforced with reward or with novel non-threatening stimuli. However, this procedure involves explicit presentations of CS+s, which is itself aversive before fear is successfully reduced. This aversiveness may be a problem when trying to translate such experimental paradigms into clinical settings. It also raises the fundamental question as to whether explicit presentations of feared objects is necessary for fear reduction. Although learning without explicit stimulus presentation has been previously demonstrated, whether fear can be reduced while avoiding explicit exposure to CS+s remains largely unknown. One recently developed approach employs an implicit method to induce learning by reinforcing stimulus-specific neural representations using real-time decoding of multivariate functional magnetic resonance imaging (fMRI) signals in the absence of stimulus presentation; that is, pairing rewards with the occurrences of multi-voxel brain activity patterns matching a specific stimulus (decoded fMRI neurofeedback (DecNef)). It has been shown that participants exhibit perceptual learning for a specific visual stimulus feature through DecNef, without being given any strategy for the induction of specific neural representations, and without awareness of the content of reinforced neural representations. Here we examined whether a similar approach could be applied to counter-conditioning of fear. We show that we can reduce fear towards CS+s by pairing rewards with the activation patterns in visual cortex representing a CS+, while participants remain unaware of the content and purpose of the procedure. This procedure may be an initial step towards novel treatments for fear-related disorders such as phobia and PTSD, via unconscious processing.