Bioinspired armours
Nature Materials
2014년3월31일
Inspiration for the design of new lightweight armours could be drawn from the hierarchical structure and deformation properties of a bivalve mollusc shell, reports a study published online this week in Nature Materials.
Ling Li and Christine Ortiz probed the penetration resistance and deformation mechanisms of the bivalve Placuna placenta following the application of nanoscale indentations to its shell. They find that the shell is able to localize the damage by deforming to give nanoscale twins - thin, crystalline twins of calcite with an atomic arrangement that is mirrored across the twin boundary. The formation of these twins confines the deformation to a small volume and also causes other inelastic energy dissipating events including nanocracking within and between the calcite crystals, crack deflection and stretching of the organic material between the crystals.
The deformation mechanisms revealed in this work could, in theory, be applied in the development of materials for military and personal protection applications.
doi: 10.1038/nmat3920
리서치 하이라이트
-
7월29일
Engineering: Just add water to activate a disposable paper batteryScientific Reports
-
7월26일
Physics: Slab avalanche origin similar to that of earthquakesNature Physics
-
7월13일
Planetary science: Origins of one of the oldest martian meteorites identifiedNature Communications
-
7월12일
Astronomy: Casualty risk from uncontrolled rocket re-entries assessedNature Astronomy
-
7월12일
Physics: Beam vibrations used to measure ‘big G’Nature Physics
-
7월6일
Biotechnology: Mice cloned from freeze-dried somatic cellsNature Communications