Imaging genes in single cells
Nature Methods
2013년10월7일
An automated method to measure the expression of genes in thousands of single human cells is reported this week in Nature Methods. The method scales up a technique known as single-molecule fluorescence in situ hybridization (smFISH) and determines where RNA transcripts are located in the cell, providing important clues about their biological function.
smFISH can be used to detect specific RNA sequences in a cell based on their binding to a fluorescent probe, but imaging the ‘dots’ corresponding to each RNA molecule requires high magnification and delicate imaging settings. Lucas Pelkmans and colleagues use much brighter probes, allowing them to perform rapid and robust low-magnification imaging of many more cells, quantify low-level expression accurately and also query very short RNA transcripts. Their software tools automatically outline cells and nuclei, count dots to quantify expression and exhaustively document where transcripts are located in the cell. Results from studies with human cells showed highly reproducible expression levels, comparable with those determined by high-throughput RNA sequencing (RNA-seq).
The authors highlight the importance of measuring the variability of transcript expression and location in so many cells by using their data to discover genes with related functions in the cell.
doi: 10.1038/nmeth.2657
리서치 하이라이트
-
7월29일
Engineering: Just add water to activate a disposable paper batteryScientific Reports
-
7월26일
Physics: Slab avalanche origin similar to that of earthquakesNature Physics
-
7월13일
Planetary science: Origins of one of the oldest martian meteorites identifiedNature Communications
-
7월12일
Astronomy: Casualty risk from uncontrolled rocket re-entries assessedNature Astronomy
-
7월12일
Physics: Beam vibrations used to measure ‘big G’Nature Physics
-
7월6일
Biotechnology: Mice cloned from freeze-dried somatic cellsNature Communications