Physics: Putting a spin on droplets
Nature Communications
2019년3월6일
A method to create a surface that makes water droplets gyrate when they rebound off it, with rotational speeds exceeding 7,300 revolutions per minute, is described in Nature Communications this week. The findings may have applications in hydro-energy collection, self-cleaning and anti-icing processes.
When a droplet hits a surface, the outcome (if it rebounds or splashes) depends on the structure and chemical properties of the solid. However, owing to the deformability of the droplet and how quickly the interaction between the impacting droplet and solid takes place, it is challenging to manipulate this behaviour.
Yanlin Song and colleagues introduce a chemical patterning method in which high-adhesive spirals are surrounded by hydrophobic (water repelling), low-adhesive regions. When a droplet hits the surface, these patterns induce non-axisymmetric pinning forces (non-symmetrical forces around an axis) which make the droplet gyrate as it rebounds.
The authors suggest that the observed process opens up a promising avenue for the delicate control of liquid motion.
doi: 10.1038/s41467-019-08919-2
리서치 하이라이트
-
7월29일
Engineering: Just add water to activate a disposable paper batteryScientific Reports
-
7월26일
Physics: Slab avalanche origin similar to that of earthquakesNature Physics
-
7월13일
Planetary science: Origins of one of the oldest martian meteorites identifiedNature Communications
-
7월12일
Astronomy: Casualty risk from uncontrolled rocket re-entries assessedNature Astronomy
-
7월12일
Physics: Beam vibrations used to measure ‘big G’Nature Physics
-
7월6일
Biotechnology: Mice cloned from freeze-dried somatic cellsNature Communications