Materials science: Martian masonry
Scientific Reports
2017년4월28일
A Martian-soil simulant - a compound that is similar in chemical composition to Martian soil - can be compressed into a solid that may hold potential as a building material according to a study in Scientific Reports this week.
Permanent human settlement on Mars would require infrastructure to sustain life, and a steady supply of structural materials would be required. However, questions arise over whether such materials can be made solely through the use of in-situ resources and if energy-intensive processes during production, such as thermal treatment, can be avoided.
Yu Qiao and colleagues demonstrate that upon high-pressure compression, Mars-1a particles - a Martian-soil simulant - form a solid at ambient temperature that is similar to dense rock, with strengths exceeding that of steel-reinforced concrete. The authors found that nanoparticulate iron oxide, commonly detected in Martian soil, acts as a bonding agent during this process. The authors suggest that the self-cohesive soils seen on Mars may be further compressed into high-strength structural materials and that this process may be compatible with additive manufacturing, in which material is added to structures incrementally.
doi: 10.1038/s41598-017-01157-w
리서치 하이라이트
-
7월29일
Engineering: Just add water to activate a disposable paper batteryScientific Reports
-
7월26일
Physics: Slab avalanche origin similar to that of earthquakesNature Physics
-
7월13일
Planetary science: Origins of one of the oldest martian meteorites identifiedNature Communications
-
7월12일
Astronomy: Casualty risk from uncontrolled rocket re-entries assessedNature Astronomy
-
7월12일
Physics: Beam vibrations used to measure ‘big G’Nature Physics
-
7월6일
Biotechnology: Mice cloned from freeze-dried somatic cellsNature Communications