Keeping the carbon-nanotube blood flowing
Nature Nanotechnology
2011년1월31일
Amine-modified single-walled carbon nanotubes (a-SWCN’s) reduce tissue damage in the brain in a rat model of stroke, suggests a paper online this week in Nature Nanotechnology. The work lays the foundation for further studies to discover the potential protective effects of single-walled carbon-nanotubes against ischemic injury caused by stroke.
Transplanting scaffolds containing stem cells into areas of the brain that have been injured by stroke has previously been proposed as a treatment strategy. Carbon nanotubes have been investigated as potential scaffolds for stem cell therapy because of their favourable electrical properties. Sung Su Kim and colleagues pre-treated rats with a-SWCN's before inducing an ischemic injury and found that pre-treated animals had smaller volumes of damaged brain tissue and better motor function than untreated rats. Mechanistic studies suggest that the a-SWCN's protected the tissues from injury by limiting cell death and inflammation.
News and Views author Matthew Walters stresses that for a-SWCN’s to be clinically viable, the mechanism and benefits must be shown to remain relevant when the nanotubes are administered after the onset of stroke symptoms.
doi: 10.1038/nano.2010.281
리서치 하이라이트
-
7월29일
Engineering: Just add water to activate a disposable paper batteryScientific Reports
-
7월26일
Physics: Slab avalanche origin similar to that of earthquakesNature Physics
-
7월13일
Planetary science: Origins of one of the oldest martian meteorites identifiedNature Communications
-
7월12일
Astronomy: Casualty risk from uncontrolled rocket re-entries assessedNature Astronomy
-
7월12일
Physics: Beam vibrations used to measure ‘big G’Nature Physics
-
7월6일
Biotechnology: Mice cloned from freeze-dried somatic cellsNature Communications