Quarks on the mark
Nature Physics
2015년7월28일
The most precise measurements to date of the strength of the couplings between different fundamental particles known as quarks are reported online in Nature Physics this week. The measurements provide a fundamental input parameter for the standard model of particle physics and represent a stringent test of its accuracy.
In the standard model of particle physics, which describes the properties and interactions of fundamental particles, the decay of one quark to another is described by the so-called Cabibbo-Kobayashi-Maskawa (CKM) matrix. For the standard model to hold, the input parameters for the CKM matrix from different fundamental processes must be consistent with each other. By taking advantage of recent technical improvements at CERN’s Large Hadron Collider, the LHCb collaboration reports the first measurement of CKM matrix elements based on decays of baryons, particles made of three quarks.
The results of this approach are complementary to those of previously reported methods based on decays of mesons, which are particles composed of two quarks. These measurements are expected to have a significant impact on the quantitative understanding of the fitting parameters to the CKM matrix and allow constraints to be placed on any possible extensions of the standard model.
doi: 10.1038/nphys3415
리서치 하이라이트
-
7월29일
Engineering: Just add water to activate a disposable paper batteryScientific Reports
-
7월26일
Physics: Slab avalanche origin similar to that of earthquakesNature Physics
-
7월13일
Planetary science: Origins of one of the oldest martian meteorites identifiedNature Communications
-
7월12일
Astronomy: Casualty risk from uncontrolled rocket re-entries assessedNature Astronomy
-
7월12일
Physics: Beam vibrations used to measure ‘big G’Nature Physics
-
7월6일
Biotechnology: Mice cloned from freeze-dried somatic cellsNature Communications