Well-behaved geomagnetic field
Nature Geoscience
2009년9월14일
Reversals in the Earth's geomagnetic field 1.1 billion years ago can be explained by the same two-pole model that explains the more recent behaviour of the Earth's magnetic field, according to a study published online in Nature Geoscience. This is in contrast to previous studies which suggest the influence of four or even eight poles during that time.
Nicholas Swanson-Hysell and colleagues revisited the volcanic rocks from the Canadian shield used in the previous studies. Tiny magnetic grains within the volcanic rocks record the orientation of the geomagnetic field at the time the rocks were erupted onto the Earth's surface. When they looked at these records in detail, they found that the reversals were actually symmetric meaning that the geomagnetic field simply shifted from normal ― like today's field ― to reverse polarity.
They conclude that previous efforts to reconstruct the geomagnetic field from North America were confused by the rapid migration of the continent towards the Equator at rates of approximately 21 to 39 cm per year. The migration of the continent also affected the orientation of the magnetic grains, masking the record of magnetic field variations.
doi: 10.1038/ngeo622
리서치 하이라이트
-
8월18일
Environment: Protecting global forest biodiversityNature
-
8월17일
Climate change: North Atlantic hurricane season starting earlierNature Communications
-
8월17일
Climate change: Energy institutions’ decarbonization scenarios evaluated against the Paris AgreementNature Communications
-
8월16일
Food: Modelling global famine and associated deaths from nuclear weapon detonationNature Food
-
8월12일
Climate change: The Arctic is warming nearly four times faster than the rest of the worldCommunications Earth & Environment
-
8월11일
Ecology: Forest responses to climate changeNature