Physics: Putting a spin on droplets
Nature Communications
2019년3월6일
A method to create a surface that makes water droplets gyrate when they rebound off it, with rotational speeds exceeding 7,300 revolutions per minute, is described in Nature Communications this week. The findings may have applications in hydro-energy collection, self-cleaning and anti-icing processes.
When a droplet hits a surface, the outcome (if it rebounds or splashes) depends on the structure and chemical properties of the solid. However, owing to the deformability of the droplet and how quickly the interaction between the impacting droplet and solid takes place, it is challenging to manipulate this behaviour.
Yanlin Song and colleagues introduce a chemical patterning method in which high-adhesive spirals are surrounded by hydrophobic (water repelling), low-adhesive regions. When a droplet hits the surface, these patterns induce non-axisymmetric pinning forces (non-symmetrical forces around an axis) which make the droplet gyrate as it rebounds.
The authors suggest that the observed process opens up a promising avenue for the delicate control of liquid motion.
doi: 10.1038/s41467-019-08919-2
리서치 하이라이트
-
6월29일
Environment: 1.81 billion people at risk of 1-in-100 year floodNature Communications
-
6월28일
Astronomy: Hydrogen- and helium-rich exoplanets may provide habitable conditions for billions of yearsNature Astronomy
-
6월28일
Climate change: Decline in tropical cyclones during the twentieth centuryNature Climate Change
-
6월24일
Environment: Assessing the impacts of US school lunches on climate, land and waterCommunications Earth & Environment
-
6월24일
Palaeontology: It sucked to be the prey of ancient cephalopodsScientific Reports
-
6월23일
Scientific community: Women credited less than men in scientific paper authorshipNature