Clouds double El Nino amplitude
Nature Geoscience
2016년1월5일

The influence of clouds on the atmospheric circulation accounts for more than half of the strength of El Nino and La Nina events, suggests a study published online in Nature Geoscience this week. The findings indicate that incorporating changes in cloud dynamics into climate models may improve our understanding of the response of El Nino/Southern Oscillation (ENSO) to climate change.
ENSO is the most significant source of weather variability on timescales of three to seven years. However, the relative importance of atmospheric and oceanic processes, and the interactions between the two, is the subject of debate.
Thorsten Mauritsen and colleagues compared climate model simulations that accounted for the interactions between clouds and atmospheric circulation with climate model simulations that did not account for these interactions. They find that the variability in sea surface temperatures associated with ENSO is at least twice as strong in the simulations that fully account for the interactions between clouds and atmospheric circulation.
doi: 10.1038/ngeo2630
리서치 하이라이트
-
3월4일
Environment: Reservoirs account for more than half of water storage variabilityNature
-
3월2일
Evolution: Neanderthals may have heard just like usNature Ecology & Evolution
-
3월2일
Geoscience: Earth’s atmosphere may return to low-levels of oxygen in one billion yearsNature Geoscience
-
2월26일
Environment: Shifting from small to medium plastic bottles could reduce PET wasteScientific Reports
-
2월24일
Environment: European forests more vulnerable to multiple threats as climate warmsNature Communications
-
2월11일
Environment: Global CFC-11 emissions in declineNature